Editorial Team

Editor-in-Chief: Parham Jabbarzadeh Kaboli
PhD of Molecular Biology and Cancer researcher; Faculty of Medicine and Health Sciences, University Putra, Malaysia (Website; Emails: researchgroups@drugdiscovery.ir)

Managing Editor: Yusuf Kaya
PhD, Professor of Biology, Atatürk University, Erzurum, (Website, Email: ykaya@atauni.edu.tr)

Executive Editor: Zohreh Yousefi
PhD candidate, Biosystematics, Atatürk University, Erzurum, Turkey (Emails: zohreh.yousefi12@ogr.atauni.edu.tr)

Language Editor: Samuel Stephen Oldershaw
Master of TESOL, The Humberston School & The Grimsby Institute, Nuns Corner, Grimsby, North East Lincolnshire, United Kingdom (Email: s.s.oldershaw@hotmail.com)

Associate Editors

Aleksandra K. Nowicka
PhD, Pediatrics and Cancer researcher; MD Anderson Cancer Center, Houston, Texas, USA (Email: aknowicka@mdanderson.org)

Paola Roncada
PhD, Pharmacokinetics, Residues of mycotoxins in food and in foodproducing species, University of Bologna, Italy (Email: paola.roncada@unibo.it)

Tohid Vahdatpour
PhD, Assistant Prof., Physiology, Islamic Azad University, Iran (Website; Scopus; Emails: vahdatpour@iaushab.ac.ir)

Veghar Hejazi
MD, Tabriz University of Medical Sciences, Tabriz, Iran (Email: vegharhejazi@gmail.com)

Nefise Kandemir
MD, PhD, Department of Medical Genetics, Erciyes University, Kayseri, Turkey

Reviewers

Abolghasem Yousefi
PhD, Assistant Professor of Anesthesiology, Tehran University of Medical Sciences, Tehran, Iran (Website; Email: avousefi@gmail.com)

Aleksandra K. Nowicka
PhD, Pediatrics and Cancer researcher; MD Anderson Cancer Center, Houston, Texas, USA (Email: aknowicka@mdanderson.org)

Amany Abdin
PhD, Pharmacology; MSc, Medical Biochemistry; Tanta University, Egypt (Emails: amanyabdin@med.tanta.edu.eg, amanynhr@hotmail.com)

Babak Yousefi
Physician, General Surgery Resident at Hamedan University of Medical Science, Hamedan, Iran

Fazal Shirazi
PhD, Infectious Disease researcher at MD Anderson Cancer Center, Houston, Texas, USA

Fikret Çelebi
Professor of Veterinary Physiology; Atatürk University, Turkey (Website; Email: fncelebi@atauni.edu.tr)
Join JLSB Team

Journal of Life Sciences and Biomedicine (JLSB) as international journal is always striving to add diversity to our editorial board and operations staff. Applicants who have previous experience relevant to the position they are applying for may be considered for more senior positions (Section Editor) within JLSB. All other members must begin as Deputy Section Editors before progressing on to more senior roles. Editor and editorial board members do not receive any remuneration. These positions are voluntary.

If you are currently an undergraduate, M.Sc. or Ph.D. student at university and interested in working for JLSB, please fill out the application form below. Once your filled application form is submitted, the board will review your credentials and notify you within a week of an opportunity to membership in editorial board.

If you are PhD, assistant, associate editors, distinguished professor, scholars or publisher of a reputed university, please rank the mentioned positions in order of your preference. Please send us a copy of your resume (CV) or your ORCID ID or briefly discuss any leadership positions and other experiences you have had that are relevant to applied Medical and Pharmaceutical Researches or publications. This includes courses you have taken, editing, publishing, web design, layout design, and event planning. If you would like to represent the JLSB at your university, join our volunteer staff today! JLSB representatives assist students at their university to submit their work to the JLSB. You can also, registered as a member of JLSB for subsequent contacts by email and or invitation for a honorary reviewing articles.

Contact us at: editors@jlsb.science-line.com

Download Application Form (.doc)
Research Paper
Analysis of the post-partum vaginal repair by injecting platelet-rich plasma; a study undertaken in Saudi German hospital K.S.A.

Hassan Soliman HE-MAA

Abstract
Aim. The research was based on the objective of vaginal recovery after vaginal delivery of women. PRP was used to determine whether the effects of the injecting PRP on vagina made any difference on vaginal prolapse repair or not. Therefore, the primary goal was to find the application of the PRP on the case of vaginal tear recovery of the mothers.

Methods. The observational approach was utilized to conduct the following research. We examined (P=210) participants, while study duration was 10 months from November 2017 to August 2018. Results. The outcomes were 100% positive in the researcher’s cohort since all the participants responded well while recovered fast than the usual estimated time. Conclusion. Injecting PRP for repairing vaginal tear is considered to be optimizing for the general medical background patients whereas, for the long-term follow-up, the study requires to get the large numbers of participants in order to make the research generic.

Keywords: Post-Partum, Vaginal Tear, Vaginal Repair, Platelet-Rich Plasma, Gynecological Study

[Full text-PDF] [XML]

Research Paper
Results of cytokine research of pregnant women with the risk of premature birth.

Khakimovna RN.

Abstract
Aim. The aim of the research is to study the content of pro-inflammatory and anti-inflammatory cytokines of pregnant women with the risk of preterm birth (PB).

Methods. Examined 42 women in the third trimester of gestation with the risk of preterm birth. Determination of the cytokine status of IL-1β, IL-4, IL-6, IL-8, IL-10 and TNF-α in the serum of peripheral blood was performed by Enzyme immunoassay.

Results. The systemic cytokine status was studied in pregnant women with the risk of PB. An imbalance of cytokines has been established, characterized by an increase in the content of pro-inflammatory cytokines and a decrease in anti-inflammatory interleukins, indicating an increased inflammatory response of the organism in the genesis of premature birth.

Conclusion. The study of cytokine balance is important to assess the direction of the immune response, as well as the outcome of pregnancy for the mother and fetus. Excessive stimulation of the systemic humoral immune response as a result of increased activity of peripheral pro-inflammatory cytokines and low secretion of anti-inflammatory cytokines are one of the fundamental mechanisms underlying the development of premature birth.

Keywords: Preterm birth, Pro-inflammatory, Anti-inflammatory cytokines, Cytokine status

[Full text-PDF] [XML]

Research Paper
Assessment of antibacterial efficacy of Lugol’s iodine compared with commercial hand sanitizers of Bangladesh.

Abstract
Introduction. Hand disinfection is an essential step to prevent infection, reduce morbidity and minimize health care costs in a
community. **Aim.** In this study, the Lugol's iodine (2%) solution was evaluated to use as an emergency hand sanitizer and compared with the three commercially available hand sanitizers (Hexisol, Sepnil and Handirub) of Bangladesh. **Methods.** These hand sanitizers were examined and analyzed by susceptibility test, minimum bactericidal concentration test and efficacy determination test. The agar diffusion test was used to assess the efficacy of the products against pathogenic *Escherichia coli*, *Shigella flexneri*, *Staphylococcus aureus*, *Salmonella typhi* and *Streptococcus pneumoniae*. **Results.** Handirub has inhibited all the test organisms with highest zones of inhibition ranging between 24.38 mm and 28.63 mm while Hexisol zone of inhibition was ranging from 13.3 mm to 15 mm. Unfortunately, Sepnil was inactive against *Salmonella typhi*, with very poor performance against other test organisms. All the three commercial hand sanitizers were only bacteriostatic at 100% concentration, while both 2% and 1% iodine were 100% bactericidal. The comparative study of the efficacy determination tests revealed that the Hexisol, Sepnil and Handirub are 93.05%, 85.99% and 96.57% effective against microorganism, respectively. Interestingly, both 2% and 1% of iodine solutions gave 100% reduction of viable bacteria during the efficacy determination test. **Conclusion.** It is concluded that 1% iodine showed better results against infection when compared to the other hand sanitizers used in this study. **Recommendation.** Lugol's iodine could be an effective alternative to hand washing to achieve asepsis for the health-care professional in emergency outreach program and water scarcity areas. **Keywords:** Hand sanitizer, Lugol's iodine, Hand hygiene, Minimum inhibitory concentration

Research Paper

Esophagus extirpation in the surgical treatment of neglected stages of esophageal achalasia.

Nazirov FG, Nizamkhodjayev ZM, Ligay RE, Tsoi AO, Shagazatov DB, Nigmatullin EE and Babadjanov KB.

Abstract

Aim. The surgical treatment experience of patients with neglected stages of esophageal achalasia has been presented in the article.
Methods. The esophagus extirpation with simultaneous gastroesophagoplasty due to esophageal achalasia of stage III-IV was performed in 28 patients. **Results.** The results of the research, identifies indications for surgical intervention, features of intra- and postoperative complications, immediate and long-term results of esophageal extirpation. Cardiodilation remains the main treatment method for patients with esophageal achalasia, but its efficiency is significantly reduced in patients with neglected stages. **Conclusion.** Esophagus extirpation in patients with neglected stages of achalasia is pathogenetically reasonable surgical intervention when there is severe esophagoectasia and S-shaped deformity of the esophagus and cardio-esophageal junction. Further control randomized trials and multicentric studies should be performed.
Keywords: Achalasia, Neuromuscular diseases of the esophagus, Esophageal extirpation, Gastroplasty.

Review

Systematic review on avian immune systems

Birhan M.

Abstract

Aim. The aim of this review paper is too summarized and compares avian immune systems to the other domestic animals as comparative immunology type of review. Appreciation of the avian immune systems and their functions are very critical for disease diagnostics and new vaccine developments. Some of the avian immune systems are differ from mammalian immune systems, based on their production sources of immune cells like B-cells production site bursa of fabrics, but in mammalian is bone marrow. When we see the antibody type of birds; there are three principal classes of antibodies: IgM, IgG, IgY and IgA. Antibody diversity is achieved by gene re-arrangement. The other effector immune cell of birds is T cells. There are two distinct pathways that are α/β and γ/δ, avian T-cell diversity is probable made through combinatorial and junctional mechanisms. Recently, genes of several avian cytokines have been cloned and expressed. A number of naturally occurring viruses cause immunosuppression in chickens. **Conclusion.** There is much current interest in understanding the mechanisms of immunosuppression and developing strategies to enhance immune responsiveness in commercial poultry.
Keywords: Antibody, Avian, T cells, Vaccine

Archive
The Journal of Life Science and Biomedicine is aimed to improve the quality and standard of life with emphasis on the related branches of science such as biology, physiology, biochemistry, zoology, anatomy, pathology and their applications and innovations in medicine and healthcare... view full aims and scope

http://jlsb.science-line.com

» JLSB indexed/covered by NLM Catalog, RICeST (ISC), Ulrich’s™, SHERPA/RoMEO, Genamics, Google Scholar (h-index= 10), Index Copernicus... details

» Open access full-text articles is available beginning with Volume 1, Issue 1.

» Full texts and XML articles are available in ISC-RICeST.

» This journal is in compliance with Budapest Open Access Initiative and International Committee of Medical Journal Editors' Recommendations.

» High visibility of articles over the internet.

» Publisher Item Identifier ...details

» This journal encourage the academic institutions in low-income countries to publish high quality scientific results, free of charges... view Review/Decisions/Processing/Policy
Analysis of the post-partum vaginal repair by injecting platelet-rich plasma; a study undertaken in Saudi German hospital K.S.A

Dr. Hassan El Motawkel Ala Allah HASSAN SOLIMAN
HOD & Consultant Obstetrics & Gynecology, Saudi German Hospital, Aseer, KSA.

ABSTRACT

Aim. The research was based on the objective of vaginal recovery after vaginal delivery of women. PRP was used to determine whether the effects of the injecting PRP on vagina made any difference on vaginal prolapse repair or not. Therefore, the primary goal was to find the application of the PRP on the case of vaginal tear recovery of the mothers. Methods. The observational approach was utilized to conduct the following research. We examined (p=210) participants, while study duration was 10 months from November 2017 to August 2018. Results. The outcomes were 100% positive in the researcher's cohort since all the participants responded well while recovered fast than the usual estimated time. Conclusion. Injecting PRP for repairing vaginal tear is considered to be optimizing for the general medical background patients whereas, for the long-term follow-up, the study requires to get the large numbers of participants in order to make the research generic.

INTRODUCTION

During the vaginal delivery, it is common to have perineal postpartum tear due to stretching of the vagina. It usually causes the tear of vaginal layers which eventually causes the temporary injury [1]. The degrees of vaginal tears are divided into 4 categories. While these degrees depend upon the severity of the tear. In the first degree tear, it includes the tear of vaginal mucosa and the connective tissue [2]. In the second degree tear, it involves the tear of vaginal mucosa and connective tissue along with the underlying muscles. For the third degree tear, it involves the complete transection of an anal sphincter [3-5]. And the last degree tear includes the tear of rectal mucosa [6]. A woman may suffer from any of these after delivery while just how there are several degrees of injury [7], there are different method for its recovery as well [8, 9].

The following research is based on the postpartum vaginal repair by injecting Platelet-rich plasma (PRP). The primary objective of the research study is to analyze and evaluate the use and benefits of PRP in order to know its significance and in the area of postpartum vaginal repair.

MATERIAL AND METHODS

Ethical approval

The review board and ethics committee of Saudi German Hospital, Aseer approved the study protocol and informed consents were taken from all the participants.

The observational study method was implied in the following research. The study was undertaken at tertiary referral unit in K.S.A. Saudi German Hospital, Aseer. Whereas the participants were under observation for the research purposes. The participants for the research comprised of 210 laboring women between 22-46 years old.

Limitations

The study includes some of the significant limitations which are significant to come in the observation. Those are given as follow:
The observational study lacks in providing the conclusive results or the authentic evidence as a result. Moreover, date limitations also play their role in making evidence weak. In order to overcome these limitations, it is essential to conduct a randomized controlled trial. The sample size of the participants limits the research to get appropriate conclusion and generalized outcome. For that reason, it is essential to carry the evidence-based research along with the large sample to make the outcomes generalized.

Procedure and Analysis

The following study was undertaken in the time period of 10 months in which 210 laboring women between the ages of 22 to 46 were the participants. These participants were critically observed in order to analyze the application of PRP in vaginal repair.

The infiltration was made by using 20ml of Lidocaine (2%) with 1 Amp Vasopressin 20 IU + 30 ml Normal Saline +/− Sedation Inj. Dormicum 15mg/3ml. the major factors that have the significant role in the observational study include The Surgical Technique including Vaginoplasty and Perinorrphy which depends upon pre-delivery evaluation of vaginal laxity, widening, distance between the vagina and anus, any varicosities and mass. Following the experimental procedure, the participants were provided the sedation and after that the vasoconstrictor and local Analgesia Solution in both vaginal wall and perineum. The re-evaluation after the delivery was performed which further included: Careful dissection of the vaginal wall equally starting from the apex till the mucocutaneous junction at the introitus, two to three stitches at the deep and superficial perineal muscles and levator ani muscles and removal of the all excess vaginal tissues. After that the procedure proceeded by suturing the vaginal wall starting from the apex until the hymen ring and the one deep as well as a high stitch to approximate the bulbospongious muscle on both sides. The suturing was completed until the mucocutaneous junction while two or three stitches were tied muscles and interrupted stitches including subcuticular stitches of the perineal area. After completion of the repair process, inject ± 4.5 – 5ml of PRP which was already prepared at the time of delivery after extraction of 8–9 ml blood from the patient and put in the tube and centrifuge for 5 minutes to separate the PRP from the whole blood. Afterwards the PRP is injected to subcutaneous and subvaginal for further experimental approach. In the last compression and assurance of the heamostasis by vaginal back after catheterization, analgesia (mainly non-steroidal anti-inflammatory supplements) was done.

Furthermore, the statistical measurements of the parity and the age of participants are elaborated in tables 1 and 2. Any participant with any medical disorders e.g. hypertensive, diabetic, hypothyroid was well controlled before implication of the treatment. Thirteen of the women were diagnosed with hypertensive but not pre-eclampsia symptoms. Seventeen of them were Anemic with the Hb below 10.5. 41 of the women were diagnosed diabetic while the experiment was obtained on total 210 numbers of women from 22 to 46 years of age. Weight of the participants was measured between 63 to 114 kg.

Table 1. Characteristics of the participants of the study

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>22-46 years</th>
<th>69-117 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical disorder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetic</td>
<td>14.76 %</td>
<td></td>
</tr>
<tr>
<td>Hypertensive</td>
<td>6.19 %</td>
<td></td>
</tr>
<tr>
<td>Hypothyroid</td>
<td>27.14 %</td>
<td></td>
</tr>
<tr>
<td>Epilepsy</td>
<td>0.95 %</td>
<td></td>
</tr>
<tr>
<td>Multiple medical disorder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetic and hypertensive</td>
<td>5.23 %</td>
<td></td>
</tr>
<tr>
<td>Diabetic and hypothyroid</td>
<td>1.42 %</td>
<td></td>
</tr>
<tr>
<td>Hypertensive and hypothyroid</td>
<td>3.33 %</td>
<td></td>
</tr>
<tr>
<td>Parity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1 – P5</td>
<td>66.19 %</td>
<td></td>
</tr>
<tr>
<td>P6 – P11</td>
<td>33.80 %</td>
<td></td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSION

After deeply analyzing the outcomes and observations made on the participant in ten months’ time period, the researcher concluded the approach towards vaginal repair immediately after delivery is effective and more feasible. Furthermore, it adverts that the addition of vasopressin and lidocaine infiltration helps to prevent heavy blood loss and leads to prolong the analgesic effect. There were multiple more advantages observed during the observation like more analgesics time, cosmetic appearance, less infection and less dehiscence of the wound. Therefore the participant of the study (p=210) along with mediocre medical background responded well to the experimental vaginal repair experiment. Hence, the study was proved to be 100% successful whereas, for long-term follow-up, there is a need for large sample of participants for further evaluation and comparison.

The average size of a baby’s head is 11.4 centimeters in diameter. The average diameter of a woman’s vagina (according to a study) is 2.1 to 3.5 centimeters [10]. This initiates the scenario of complication in delivery [9-12]. Perhaps, some of the women do not require vaginal tear to deliver a child but some of them experience different degrees of the vaginal tear [13]. The process of repairing vagina take long while the sensitivity of area makes it critical to handle [14]. That is why different approaches are usually followed in order to speed up the repair of an organ [15]. Usually the initial steps for the tear include suturing and stitches after that different medicines are used to cure the stitches further [13, 15]. This particular research follows the idea of injecting PRP for speeding up the process of vaginal repair while the observational study was prioritized on the basis of its advantages defined as follow:

Through the PRP approach for vaginal repair, there is a significant decrease in blood loss as well as time of the repair [15, 16]. It provides more analgesics time while providing more cosmetic appearance later on [15]. There are also very fewer chances of infection as dehiscence of the wound as per the results advert. For the concept of PR, the Plasma is the portion of liquid which contains whole blood. It has the large of water and proteins, platelets to circulate within the body for healing purpose [14]. Platelet activation plays a key role in the body’s natural healing process [15]. Its major application is to heal the tissues of the body and has been used for multiple medical purposes in history.

CONCLUSION

The applications of Platelet-rich plasma (PRP) was proved to be significant for the vaginal repair after first, second and third-degree tear of women during vaginal delivery. The necessary measurements were made to check the medical condition of the study participants and the approach towards new treatment was applied to them in order to observe its outcomes. The researcher took the consent of the laboring women before the experiment and it was conducted with all security measures from healthcare perspective.

DECLARATIONS

Funding Statement
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interests
Authors do not have any conflict of interests.

REFERENCES

2. Weber AM and Walters MD. Anterior vaginal prolapse: review of anatomy and techniques of surgical repair. Obstetrics & Gynecology, 1997, 89(2), pp.311-318. (Search Google Scholar; Export Citation as EndNote)

7. Pathi SD, Acevedo JF, Keller PW, Kishore AH, Miller RT, Wai CY and Word RA. Recovery of the injured external anal sphincter after injection of local or intravenous mesenchymal stem cells. Obstetrics & Gynecology, 2012, 119(1), pp.134-144. (Search Google Scholar; Export Citation as EndNote)

8. Gyhagen M1, Bullarbo M, Nielsen TF and Milsom I. Prevalence and risk factors for pelvic organ prolapse 20 years after childbirth: a national cohort study in singleton primiparae after vaginal or caesarean delivery. BJOG: An International Journal of Obstetrics & Gynaecology, 2013, 120(2), pp.152-160. (Search Google Scholar; Export Citation as EndNote)

13. Hauck YL, Lewis L, Nathan EA, White C and Doherty DA, Risk factors for severe perineal trauma during vaginal childbirth: a Western Australian retrospective cohort study. Women and Birth, 2015, 28(1), pp.16-20. (Search Google Scholar; Export Citation as EndNote)

15. Lacci, K.M. and Dardik, A., Platelet-rich plasma: support for its use in wound healing. The Yale Journal of Biology and Medicine, 2010, 83(1), p.1. (Search Google Scholar; Export Citation as EndNote)

Results of cytokine research of pregnant women with the risk of premature birth

Ruzieva Nodira KHAKIMOVNA

Tashkent Pediatric Medical Institute, Tashkent city, Uzbekistan.
Corresponding author’s Email: n-ruzieva@mail.ru

ABSTRACT

Aim. The aim of the research is to study the content of pro-inflammatory and anti-inflammatory cytokines of pregnant women with the risk of preterm birth (PB). Methods. Examined 42 women in the third trimester of gestation with the risk of preterm birth. Determination of the cytokine status of IL-1β, IL-4, IL-6, IL-8, IL-10 and TNF-α in the serum of peripheral blood was performed by Enzyme immunoassay. Results. The systemic cytokine status was studied in pregnant women with the risk of PB. An imbalance of cytokines has been established, characterized by an increase in the content of pro-inflammatory cytokines and a decrease in anti-inflammatory interleukins, indicating an increased inflammatory response of the organism in the genesis of premature birth. Conclusion. The study of cytokine balance is important to assess the direction of the immune response, as well as the outcome of pregnancy for the mother and fetus. Excessive stimulation of the systemic humoral immune response as a result of increased activity of peripheral pro-inflammatory cytokines and low secretion of anti-inflammatory cytokines are one of the fundamental mechanisms underlying the development of premature birth.

INTRODUCTION

The physiological course of pregnancy is accompanied by a certain restructuring of the immune system, which ensures the tolerance of the mother’s body to the antigens of the ovum and gestation. It has now become apparent that the protection of the fetus from damaging maternal immune response is based on a complex mechanism and that communication between different steps in the cascade of events is carried out by means of cytokines [1].

In the last decade, active research on the role of cytokines in the development of preterm birth (PB) has been conducted. Being biologically active factors, cytokines, first of all, regulate the development of local defense reactions in tissues with the participation of various types of blood cells, endothelium, connective tissue and epithelium. Cytokines are responsible for all successive stages of development of an adequate response to the introduction of the pathogen, ensuring its localization and removal, and then restoring the damaged tissue structure, no matter where the inflammatory reaction develops [2].

The main role is assigned to the cytokine network, the functioning of which determines the direction of the immune response in inflammation. The importance of cytokines for the life of the body cannot be overestimated. The most studied is their participation in the regulation of immunogenesis, where they are necessary at all stages of the immune response. Cytokines determine differentiation

T helps in Th-1 and Th 2-types, which differ in the profile of the cytokines synthesized by them in response to various inductors [3]. Th-1 proinflammatory cytokines produce interleukins: IL-1, IL-3, IL-8; interferons (IFN β and γ), tumor necrosis factor (TNFα), which play an important role in regulating the inflammatory response in the endometrium, limit trophoblast invasion, disrupting its formation. Th-2 is produced by interleukins: IL-4, IL-5, IL-6, IL-10, colony-stimulating factor, etc. —anti-inflammatory cytokines, and IL-10 is also called “suppressor”. It is known that Th-1 determines the development of the immune response by cell type, and Th-2 - by humoral type. The physiologically proceeding pregnancy develops with the participation of the Th-2 type of immune response, while there is a certain balance of interaction between Th-1 and Th-2 [4-6].
Until now, the main reasons leading to pronounced shifts in the immune system have not been fully studied. At the same time, the study of the state of the immune system during pathological pregnancy can contribute to the pathogenetic substantiation of rational ways of the ante- and intra-natal protection of the fetus and the prevention of complications during childbirth. The aim of study was to investigate the content of pro-inflammatory and anti-inflammatory cytokines in pregnant women at risk of developing PB.

MATERIALS AND METHODS

There were 42 women examined in the third trimester of gestation with the risk of premature birth: recurrent with burdened obstetric history (abortion, preterm birth), with dysbiosis of the vagina and intestines. The study did not include patients with isthmic cervical insufficiency, uterine malformations and myomas, as well as carriers of TORCH infection. All patients came to the clinic with complaints of lower abdominal pain, constipation, poor health, dysuric disorders, and the presence of abnormal discharge from the genital tract.

In 86% of women in the vaginal contents using polymerase chain reaction diagnostics revealed the presence of pathogenic microflora and mixed infections. The species composition of the microbiocenosis of the vagina and the cervical canal of female patients was characterized by the predominance of the share of coccobacillary flora and gardnerellas. The diagnosis of bacterial vaginosis was established on the basis of clinical and anamnestic indicators, and verified according to light microscopy of a smear from the posterior vaginal fornix and determining the reaction of vaginal secretions (pH-metry). To describe the microscopic picture of the vaginal biocenosis, light microscopy of smears stained by Gram was performed (Lyumam-P8 microscope, JIOMO, St. Petersburg). The degree of vaginal dysbiosis was determined microscopically by the criteria proposed by Mavzyutov et al. [7]. Later bacteriological cultures were carried out with a quantitative analysis of the microbiocenosis.

Determination of the cytokine status of IL-1β, IL-4, IL-6, IL-8, IL-10 and TNF-α in the serum of peripheral blood was performed by Enzyme immunoassay. The data obtained in 24 women with physiological pregnancy were used as controls.

Statistical analysis

Statistical data processing included determining the arithmetic mean and arithmetic mean error. Reliability of differences was calculated by Student's t-test.

RESULTS

It was established that by women of the control group the level of cytokine IL-1β in serum was 2.35±0.18 pg/ml, IL-4: 5.76±0.44 pg/ml. The serum content of IL-6 was 2.25±0.17 pg/ml, IL-8: 6.36±0.58 pg/ml, IL-10: 23.14±1.57 pg/ml, and TNF-α level was in the range of 1.68±0.13 pg/ml (Table 1).

Analysis of indicators of pregnant women of the main group revealed a significant increase in serum IL-1β production by 6.7 times (14.6±0.87 pg/ml, P<0.05). IL-1 is an inducible protein, the synthesis of which is necessary for the acute phase response. The main producers of cells are monocytes, macrophages, endothelium and other cells. An excessively high level of IL-1 indicates the possibility of undesirable immunopathological processes. IL-1 is characterized by the ability to stimulate prostaglandin production. Keeping this cytokine low is one of the factors contributing to pregnancy.

By pregnant women with the risk of premature birth, the level of IL-8 was increased 1.6 times (9.98±0.63 pg/ml) compared with the same indicator in the control group. A high level of spontaneous production of IL-8 may indicate a significant activation of mononuclear phagocyte-producing pro-inflammatory cytokines, which play an important role in the development of immunopathological processes [8].

The obtained data on the increase in IL-1β and IL-8 are a reflection of the activity of the inflammatory process. An increase in the concentration of pro-inflammatory cytokines suggests that the inflammatory response in a given cohort of pregnant women has systemic manifestations. At the same time, IL-1 stimulates the release of stab leukocytes from the bone marrow, increases the formation and release of collagenase, causes the expression of endothelial-leukocyte adhesive molecules on the surface of endothelial cells and leukocytes, contributes to marginal standing of leukocytes and stimulates the process of their emigration.

As its shown by the results of our studies, pregnant women at risk of premature birth have an increase in serum IL-6 content 2.1 times (4.83±0.39 pg/ml) compared with the data of healthy pregnant women (P<0.05).
Due to a violation of the placental barrier, a large amount of antigenic material of fetal origin enters the mother’s circulation. This leads to the induction of an inflammatory response from the maternal immune system with the production of a large amount of IL-6 and TNF-alpha, which causes a high level of apoptosis of the trophoblast. In addition, IL-6 stimulates prostaglandin production, which leads to cervical remodeling and the development of labor activity. IL-6 is used as a marker for predicting preterm labor activity [9].

<table>
<thead>
<tr>
<th>Table 1. Results of two comparison groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicator</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>IL-1 b, pg/ml</td>
</tr>
<tr>
<td>IL-2, pg/ml</td>
</tr>
<tr>
<td>IL-4, pg/ml</td>
</tr>
<tr>
<td>IL-6, pg/ml</td>
</tr>
<tr>
<td>IL-8, pg/ml</td>
</tr>
<tr>
<td>IL-10, pg/ml</td>
</tr>
<tr>
<td>TNF-a, pg/ml</td>
</tr>
<tr>
<td>IgA, g/l</td>
</tr>
<tr>
<td>IgG, g/l</td>
</tr>
<tr>
<td>IgM, g/l</td>
</tr>
</tbody>
</table>

*In comparison with the control group (P<0.05).

According to our data, by pregnant women with the risk of premature birth, the serum level of TNF-a increases 1.9 times (3.12±0.28 pg/ml) compared with the control data (P<0.05). TNF-a is formed by tissue macrophages, monocytes and lymphocytes in the zone of acute inflammation, strengthens the main functions of leukocytes, stimulates the release of histamine by basophils and mast cells, causes activation of fibroblasts, smooth myocytes and vascular endothelium in the inflammation, and induces synthesis of proteins of the acute phase of inflammation. TNF-a hypersecretion leads to a significant increase in the number of apoptotic trophoblast cells, which can be one of the factors contributing to miscarriage [10].

The presence of a strong positive correlation between increased levels of TNF-alpha, IL-1, IL-6, IL-8 and the clinical condition of the examined pregnant women indicates significant impairments in which pro-inflammatory cytokines enter the systemic circulation, which contributes to pathogenesis of preterm birth. As can be seen from the presented research results, an increase in TNF-alpha and cytokines can serve as markers of inflammation of the vascular endothelium of the uterus, and also indicate a high permeability of the membranes of the fetal membranes, which, in our opinion, is one of the causes of the mechanisms of preterm and amniotic fluid.

Among the risk factors that are considered to cause preterm birth, one of the main ones is infectious. Increased levels of pro-inflammatory cytokines under the influence of infection in the second and third trimesters of pregnancy leads to an increase in the synthesis of prostaglandin by amniotic membranes, contributing to the premature development of labor [11]. It was established that in the normal course of pregnancy, the cytokine status shifts towards immunosuppressive cytokines (IL-2, IL-4, IL-10, TGF-β), which inhibit cellular immunity reactions and stimulate the production of blocking antibodies [12]. In our study, the anti-inflammatory cytokines were: IL-2: 7.54±0.64 pg/ml, IL-4: 3.15±0.23 pg/ml, IL-10: 7.36±0.62 pg/ml that is, respectively, significantly 1.5 times, 1.8 and 3.1 times lower than the corresponding indicators of the control group. The most informative is the level of IL-10, insufficient production of this anti-inflammatory cytokine can happen to be a marker of the risk of developing preterm birth.

CONCLUSION

Our research results suggest that the study of cytokine balance is important to assess the direction of the immune response, as well as the outcome of pregnancy for the mother and fetus. Excessive stimulation of the systemic humoral immune response as a result of increased activity of peripheral pro-inflammatory cytokines and low secretion of anti-inflammatory cytokines are one of the fundamental mechanisms underlying the development of preterm birth.
DECLARATIONS

Acknowledgements
This work was supported by Department of Obstetrics and Gynecology, Pediatric Gynecology, Uzbekistan.

Authors' Contributions
All authors contributed equally to this work.

Competing interests
The authors declare that they have no competing interests.

REFERENCES

1. Musakhodzhaeva DA. Immunobiological indicators in women outside and during pregnancy are normal and when exposed to adverse factors. The Doctoral Program in Biological Sciences. Tashkent. 2010. pp. 34
12. Nefedova DD, Linde VA, Levkovich MA. Immunological aspects of pregnancy. Medical Bulletin of the South of Russia.- 2013 (Search Google Scholar; Export Citation as EndNote)
Assessment of antibacterial efficacy of Lugol’s iodine compared with commercial hand sanitizers of Bangladesh

Md. Nafiur Rahman1, Mohammad Abdullah-Al-Shoeb1, Saaimatul Huq2 and Muhammad Abul Kalam Azad3

1Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
2Molecular Biotechnology division, National Institute of Biotechnology, Savar, Dhaka-1349, Bangladesh
3Corresponding author’s Email: makazad-bmb@sust.edu

ABSTRACT

Introduction. Hand disinfection is an essential step to prevent infection, reduce morbidity and minimize health care costs in a community. Aim. In this study, the Lugol’s iodine (2%) solution was evaluated to use as an emergency hand sanitizer and compared with the three commercially available hand sanitizers (Hexisol, Sepnil and Handirub) of Bangladesh. Methods. These hand sanitizers were examined and analyzed by susceptibility test, minimum bactericidal concentration test and efficacy determination test. The agar diffusion test was used to assess the efficacy of the products against pathogenic Escherichia coli, Shigella flexneri, Staphylococcus aureus, Salmonella typhi and Streptococcus pneumoniae. Results. Handirub has inhibited all the test organisms with highest zones of inhibition ranging between 24.38 mm and 28.63 mm while Hexisol zone of inhibition was ranging from 13.3 mm to 15 mm. Unfortunately, Sepnil was inactive against Salmonella typhi, with very poor performance against other test organisms. All the three commercial hand sanitizers were only bacteriostatic at 100% concentration, while both 2% and 1% iodine were 100% bactericidal. The comparative study of the efficacy determination tests revealed that the Hexisol, Sepnil and Handirub are 93.05%, 85.99% and 96.57% effective against microorganism, respectively. Interestingly, both 2% and 1% of iodine solutions gave 100% reduction of viable bacteria during the efficacy determination test. Conclusion. It is concluded that 1% iodine showed better results against infection when compared to the other hand sanitizers used in this study. Recommendation. Lugol’s iodine could be an effective alternative to hand washing to achieve asepsis for the health-care professional in emergency outreach program and water scarcity areas.

INTRODUCTION

A hand sanitizer or hand antiseptic is a supplement or alternative to hand washing with soap and water. Keeping hand clean is one of the most essential actions for the reduction of transmission of infectious diseases in the community and hospitals environment [1, 2]. Cold viruses, flu viruses, and pathogenic bacteria are easily spread through public meeting places such as hospital, school, bus, office, etc. [3]. One gram of human feces which is about the weight of a paper clip can comprises one trillion of microorganisms [4]. Once someone coughed or sneezed or touched by some other contaminated object, the germ can spread easily from hands to hands. When these contaminated hands are not washed off, they can be passed from person to person and makes people sick [5].

A decent hand hygiene practice have been shown to be effective in various situations such as the reduction of gastrointestinal infection and diarrhea [6–8], alleviate the outbreaks of the Ebola-Virus Disease [9], lowers the rate of the respiratory illnesses, like common colds [6, 10], and finally overcome the global morbidity and minimize health care cost [11]. In a health care setting hand washing is mandatory procedure according to Centers for Disease Control and Prevention (CDCP) and it may protect us from thousands of microbes [6]. The CDC guideline reported that, about two million people get hospitalized each year due to infections and that around ninety thousands of these patients die as a result of their infections [12]. Improved hand hygiene practice by health care workers and better cleaning of common hospital equipment could reduce the probability of patients becoming colonized and lead to subsequent reductions in infectious diseases. Thus it was calculated that, routine hand hygiene could save one million lives per year [13].
Hand hygiene can be performed by the removal of microbes with ordinary soap and water, and/or hand antiseptic using an antimicrobial soap or an alcohol-based hand rub. Considering the importance of hand hygiene, the CDC issued a guideline endorsing that, the hand rub can be regularly used for decontaminating hands. The hand sanitizers are composed of alcohol, ethanol, isopropanol or propanol with a suggested concentration [14, 15]. However, iodine-based hand sanitizers also used frequently and a povidone-iodine hand wash and hand rub products demonstrated efficacious virucidal products to help prevent infection and limit the spread of Ebola virus disease [16].

Some research already reported that, hand washing with soaps may result in cracked skin as soap can remove body’s fatty acid from the skin, which then provides an entry portal for pathogens [17, 18]. On the other hand, eminent antiseptic has supplementary skincare product such as emollients, and recommended that the hand sanitizers are also well-suited by the skin [19]. Another great benefit of hand sanitizer is that it could play a vital role to prevent commonly transmissible pathogens in water lacking areas as it does not require water to wash hands. However, when use too frequently, the alcohol based hand sanitizers also can cause drying and cracking on skin. Moreover the alcohol-based hand sanitizers are classified as a fire hazard [14, 15]. Therefore, they should be stored out of child’s reach and only should use with adult supervision. If ingested, alcohol toxicity can even lead to alcohol poisoning [15]. The iodine have persistent antimicrobial activity for a prolonged period and iodine-based hand sanitizers could be a good alternative for alcohol-based hand sanitizers.

This particular study was aimed to check out the efficacy of some alcohol-based hand sanitizers and a Lugol’s iodine (2% iodine) formulation against bacteria of clinical importance using both dilution and diffusion susceptibility methods. This investigation serves to broaden the knowledge of the general public about the effect of hand sanitizers and also increases awareness on hand hygiene. Furthermore, this research might lead the manufacturers of these products to improve their products and make it more users friendly as well as a fetal tool for infectious microorganism.

MATERIAL AND METHODS

Test isolates

The clinical isolated used in this study were previously characterized and obtained from the Enteric Microbiology Laboratory of the International Central for Diarrheal Disease Research, Bangladesh. These isolates include the S. flexneri, S. aureus, S. typhi, E. coli, and S. pneumoniae. All isolates were stored in -70°C until when needed.

Hand sanitizers and Lugol’s iodine

Three brands of alcohol-based hand sanitizers were purchased from the local shop of Sylhet, Bangladesh. These are Hexisol, Sepnil, and Handirub (Table 1). Lugol’s iodine solution (2% iodine) prepared in the general laboratory of the Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology (SUST) according to FDA manual [20]. The following table 1 was developed for showing the ingredients used in hand sanitizers.

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Active ingredients</th>
<th>Manufacturer name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexisol</td>
<td>0.5% w/v chlorhexidinegluconate, 70% w/w isopropyl alcohol</td>
<td>Advanced Chemical Industries Limited</td>
</tr>
<tr>
<td>Sepnil</td>
<td>62% Ethanol</td>
<td>Square Toiletries Limited</td>
</tr>
<tr>
<td>Handirub</td>
<td>0.5 % w/v chlorhexidinegluconate, 70% w/w isopropyl alcohol</td>
<td>Eskayef Bangladesh Limited</td>
</tr>
<tr>
<td>Lugol's Iodine</td>
<td>Potassium iodide and iodine crystal</td>
<td>Laboratory formulation</td>
</tr>
</tbody>
</table>

Agar diffusion test (well variant)

In this study, the agar diffusion method was used demonstrated by Valgas et al. [21]. This test was carried out as a preliminary screen to assess the antimicrobial activities of the various products. This involved the use of an inoculum corresponding to 0.5 McFarland [22]. The absorbance of the 0.5 McFarland standards was adjusted to 0.08-0.10 in 625 nm wavelengths. The prepared standard always keeps into a dark cabinet until needed [23]. Müller-Hinton agar (MHA) was prepared for antibiotic susceptibility testing [24]. The test inoculum was swab inoculated to an MHA plate and allowed to stand at room temperature for 15 minutes. With the aid of...
a sterile 6 mm cork borer, 4 equally spaced holes were bored in the agar plate with a fifth hole in the center of the plate. Fifty microliters (50 µL) of the hand sanitizer was then introduced into each of the 4 wells while the central well was filled with an equal volume of sterile water to serve as a control. This was done for all the test organisms and hand sanitizers. The plates were incubated for 24 hours at 37°C in an upright position. They were then examined for zones of inhibition. The test was carried out in duplicates and the average of two readings was taken as the zone of inhibition in each case. Inhibition zones were measured with the aid of a ruler and all the measurement was taken as millimeter [21].

Determination of minimum inhibitory concentration (MIC)

MIC was carried out to determine the lowest concentration of test substances needed to prevent the growth of a given organism in vitro [25]. Various concentrations of the sanitizers were prepared in ascending order (40%, 60%, 80%, and 100%). In case of iodine solution, a formulation of 0.5%, 1%, 1.5%, and 2% of iodine solutions were used. The tubes were incubated for 24 hours at 37°C and examined for visible growth or turbidity. The concentration of the sanitizer at which no visible growth was observed compared with the controls, was regarded as the MIC [26].

Determination of minimum bactericidal concentration (MBC)

MBC is the lowest concentration of a specific antimicrobial that kills 99.9% of cells of a given bacterial strain [25]. MBC was determined by assaying for live organisms in the tubes from the MIC tests which have shown no visible growth. A loop full of inoculums from the MIC tubes was streaked on fresh nutrient agar plates without the hand sanitizer incorporated into them. The plates were observed for growth after incubated at 37°C for 24 hours. Absence of growth indicated a bactericidal effect of the sanitizers at that concentration which is the MBC.

Determination of efficacy of hand sanitizers in reducing viable counts of bacteria on the hands of subjects

All the three commercial hand sanitizers and Lugol's iodine were further evaluated for their efficacy in reducing baseline bacterial counts of resident flora on the hands of subjects. Twenty individual volunteers were randomly selected for the study and verbal permission was obtained from all participating volunteers prior to the experiment. Before starting this procedure, the volunteers were well educated about correct hand disinfection procedure according to WHO [27]. The five randomly selected subjects hand were examined for baseline bacterial count reduction with each sample. Sterile nutrient agar plates were serially numbered and marked as with sanitizer and without sanitizer. At first, the test was carried out with unwashed hands of the subjects. Subjects' left hands were gently used to make a finger impression on the agar by pressing and rolling the finger on the agar in the plate marked as without sanitizer. After that, three milliliters of the sanitizer was applied to the hand and then rubbed thoroughly on the palm, hands, and fingernails until the hands became dry. Further the finger impression was repeated on the plate marked with sanitizer for all subjects. The plates were incubated for 24 hours at 37°C and after 24 hours the number of colonies was counted with a colony counter. The reduction in colony-forming unit (CFU) percentage was calculated to evaluate the efficacy of different hand sanitizers. The CFU percent reduction was determined by the following simple formula.

\[
\text{CFU percent reduction} = \frac{(A-B) \times 100}{A}
\]

Where A is the viable counts of microorganism before treatment
Where B is the viable counts of microorganism after treatment

RESULTS

Agar diffusion test

In the susceptibility test, all the test products exhibited inhibitory activity against the test isolates (Table 2), except Sepnil against S. typhi. There was no inhibition zone for Sepnil against S. typhi (Figure 1), and also had lowest inhibition zone against S. flexneri, S. aureus, E.coli, and S. pneumoniae, which were 6.63 mm, 9.63 mm, 10.13 mm, and 8.30 mm respectively. Thus Sepnil was the least effective hand sanitizer to kill bacteria in agar diffusion test. Handirub gave better agar diffusion test result against S. aureus, E. coli, S. flexneri, and S. typhi by comparing with Hexisol and Sepnil. It showed the maximum diameter of the inhibition zone against S. typhi (27
mm) and lowest diameter of inhibition zone against E. coli (25.38 mm). The highest inhibition zones were observed by the 2% iodine and Handirub ranging from 24.38 mm to 28.63 mm.

Table 2. Summary of the susceptibility patterns of test organism against different hand sanitizers

<table>
<thead>
<tr>
<th>Sanitizers</th>
<th>S. flexneri</th>
<th>S. aureus</th>
<th>S. typhi</th>
<th>E. coli</th>
<th>S. pneumoniae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexisol</td>
<td>15.00</td>
<td>13.13</td>
<td>14.50</td>
<td>14.50</td>
<td>16.50</td>
</tr>
<tr>
<td>Sepnil</td>
<td>06.63</td>
<td>09.63</td>
<td>0</td>
<td>10.13</td>
<td>8.30</td>
</tr>
<tr>
<td>Handirub</td>
<td>25.88</td>
<td>26.00</td>
<td>27.00</td>
<td>25.38</td>
<td>26.80</td>
</tr>
<tr>
<td>2% iodine</td>
<td>28.63</td>
<td>26.75</td>
<td>24.38</td>
<td>26.36</td>
<td>28.00</td>
</tr>
</tbody>
</table>

Figure 1. Sample MHA plate of Hexisol and Sepnil against S. flexneri and S. typhi respectively.

Minimum inhibitory concentration (MIC)

All the commercially available hand sanitizers tested here had a MIC of 100% (Table 3). At 80% concentration, Handirub was effective against all the test organisms except Salmonella typhi, and Hexisol was effective against S. flexneri and S. aureus only (Table 3). Sepnil was not effective even at a concentration of 80% for any of the test organism. In the case of Lugol's iodine, inhibitions of all the test organisms were observed at 1%, 1.5%, and 2% concentrations (Table 3). Thus only 1% of iodine is highly effective to kill all the test organisms used in this study.

Table 3. Minimum inhibitory concentration determination (MIC) test results

<table>
<thead>
<tr>
<th>Hand sanitizer</th>
<th>Concentration (%)</th>
<th>S. flexneri</th>
<th>S. aureus</th>
<th>S. typhi</th>
<th>E. coli</th>
<th>S. pneumoniae</th>
<th>MIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexisol</td>
<td>40</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Sepnil</td>
<td>40</td>
<td>+</td>
<td>+</td>
<td>N/A</td>
<td>+</td>
<td>+</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>+</td>
<td>+</td>
<td>N/A</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>+</td>
<td>+</td>
<td>N/A</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>N/A</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Handirub</td>
<td>40</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Iodine</td>
<td>0.25</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Key: + growth, - no growth, N/A – not applicable
Minimum bactericidal concentration (MBC)

The contents of the 100% concentration tubes were further tested to determine the MBC. Unfortunately, the MBC test plates of commercial hand sanitizers showed the bacterial growth indicating that the products were only bacteriostatic against the organisms and not bactericidal. Interestingly, when the 2% iodine contents were plated on nutrient agar, there were no growths of test organisms. Similar results were also observed with the iodine concentration of 1.5% and 1%. Thus 2% iodine appeared to be the more effective hand sanitizer option as it is highly bactericidal.

Efficacy determination test

The efficacy of hand sanitizers in reducing viable counts of bacteria on the hands of volunteers was determined after applying the hand sanitizers and 2% iodine individually. The internal ethics committee of SUST approved the study protocol and informed consent were taken from all the participants. There were no commercial hand sanitizers which can reduce the 100% viable bacterial count. The efficiency determination test revealed that Handirub had highest CFU reduction rate (96.57%) by comparing with Hexisol and Sepnil (93.05% and 85.99 %, respectively) (Table 4). However, 2% iodine formulation was highly effective for the reduction of viable bacterial count on volunteer’s hand (100%). The performance of Sepnil was only 85.99%, which represent the lowest performance.

Table 4. Viable bacterial count reduction on Hands of volunteers

<table>
<thead>
<tr>
<th>Volunteers no</th>
<th>CFU percentage reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hexisol</td>
</tr>
<tr>
<td>1</td>
<td>98.16</td>
</tr>
<tr>
<td>2</td>
<td>92.69</td>
</tr>
<tr>
<td>3</td>
<td>94.39</td>
</tr>
<tr>
<td>4</td>
<td>96.21</td>
</tr>
<tr>
<td>5</td>
<td>83.79</td>
</tr>
<tr>
<td>Average reduction</td>
<td>93.05</td>
</tr>
</tbody>
</table>

DISCUSSION

Hand hygiene is one of the most important parts to control infections and prevent various diseases [28, 29]. The importance of efficacy in choosing the right-hand hygiene product is reflected in the CDC guideline on hand hygiene [30]. An eminent and prescribed method of hygiene is hand sanitizing especially in a healthcare setting and in areas lacking adequate water supply [28]. We have evaluated the antibacterial efficacy of the most popular and available brands of hand sanitizers sold in Bangladesh. Laboratory preparation of 2% iodine was also used as a hand sanitizer in this study, which can be considered as a homemade hand sanitizer.

In this study, the commercially available hand sanitizers showed a variable level of efficiency in the MIC test. Although Hexisol and Handirub have chlorohexidine and isopropyl alcohol as their active ingredient, Hexisol showed a lower diameter of inhibition zone for S. aureus and S. typhi. This could be occurring due to the poor or prolonged storage of the products which could lead to increased temperature causing evaporation of the active ingredient. In addition, the diluted hand sanitizers did not show antibacterial activity in the MIC test. Thus the antibacterial effect in MIC tests was only observed with 100% concentration of commercial hand sanitizers. On the other hand, the laboratory formulation of 2% iodine was effective in a diluted form such as 1% during MIC test.

This study revealed a poor performance in the agar diffusion test of Sepnil, as the highest diameter of inhibition zone was only 10.13 mm against E. coli. Moreover, there was no zone of inhibition for S. typhi, which represent that this bacterium was resistant against Sepnil. The Sepnil also gave the lowest CFU reduction value among the four hand-sanitizers (Graph 1). The poor activity of Sepnil is probably due to the negative interactive effects of the additional ingredients such fragrance, emollients, humectants, and thickening agents added to them. Besides, Sepnil is a gel type hand sanitizer whereas the other two sanitizers sold in liquid form. Therefore, the efficacy of hand sanitizers is also affected by the types of the sanitizers and liquid form is more suited and well distributed to the skin when it is applied to hand. The same type of finding also obtained by Kramer and his colleagues and they recommended that alcohol-based gels should not replace liquid hand disinfects in hospitals [31].
Graph 1. The overall efficiency of the used hand sanitizers to reduce the viable bacterial count

The CFU reduction rate for the commercial hand sanitizers was ranging from 85.99 to 96.57%, although the manufactures claim is 99.9% leveled on the bottle. A useful and effective hand antiseptic is still lacking in Bangladesh. Government and proper authorities should take care of this issue because the effect of hand hygiene interventions on rates of gastrointestinal and respiratory illnesses is well known. As the hand hygiene is the simplest and most effective measure to reduce hospital-acquired infections [32], government and proper authorities should take care of this issue to certify the effective hand sanitizers.

This study also focused on a laboratory-made iodine-based hand sanitizer, as they are reported as antimicrobial agents for many years [33]. However, some Muslim health care workers also refuse to use alcohol-based hand sanitizers [34]. Thus an iodine-based hand sanitizer could be a good alternative. Previously, a different form of iodine such as tincture of iodine was used as an antiseptic [35]. Interestingly, 2% iodine hand sanitizer was performed very accurately in the context of all kind of efficiency which represents it as strong hand sanitizers. Instead of all good antibacterial activity of iodine, there were some disadvantages of using it as hand sanitizer also. The iodine solution has an odd odor and a yellowish color, which might discourage to use of this iodine formulation. A further study is needed to establish this iodine formulation to use as a suitable hand sanitizer with good odor and color.

CONCLUSION

Proper hand hygiene is an important first-line defense against the spread of numerous infectious diseases. The commercially available hand sanitizers are not effective in this study, although the manufacturers claim that their products could kill 99.9% germs in hands. Thus these hand sanitizers are not sufficient for our safety, and some hand sanitizer is proved for unfair claims. On the other hand, only 1% iodine is more effective than commercial hand sanitizers in preventing bacteria from the hands of individuals. Therefore there is a necessity to confirm the effectiveness of hand sanitizers sold in Bangladesh. Regulatory authorities and manufacturers should enforce stringent quality control measures and routine inspections during production to ensure the efficacy of these products and thus protect consumers from buying inferior products. Finally, in case of an emergency and water deficit areas of the world, only 1% iodine formulation can be used as a suitable and effective hand sanitizer verified in this study.

DECLARATIONS

Acknowledgements
This work was supported by SUST Research Grant of Shahjalal University of Science and Technology, Bangladesh. Our obligations to the Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh for technical support. A special thanks to the International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR, B) for providing the clinical isolates of microorganisms.

Authors’ contributions
All authors contributed equally to this work.
REFERENCES

2. Zapka C, Leff J, Henley J, Tittel J, Nardo ED, Butler M, et al. Comparison of standard culture-based method to culture-independent method for evaluation of hygiene effects on the hand microbiome. mBio. 2017 May 3;8(2):e00093-17. (Search Google Scholar; Export Citation as EndNote)

3. Boone SA, Gerba CP. Significance of fomites in the spread of respiratory and enteric viral disease. Appl Environ Microbiol. 2007 Mar 15;73(6):1687–96. (Search Google Scholar; Export Citation as EndNote)

4. Franks AH, Harmsen HJM, Raangs GC, Jansen GJ, Schut F, Welling GW. Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol. 1998 Sep 1;64(9):3336–45. (Search Google Scholar; Export Citation as EndNote)

8. Meadows E, Le Saux N. A systematic review of the effectiveness of antimicrobial rinse-free hand sanitizers for prevention of illness-related absenteeism in elementary school children. BMC Public Health. 2004 Nov 1;4(1):50. (Search Google Scholar; Export Citation as EndNote)

9. Wolfe MK, Gallandat K, Daniels K, Desmarais AM, Scheinman P, Lantagne D. Handwashing and Ebola virus disease outbreaks: A randomized comparison of soap, hand sanitizer, and 0.05% chlorine solutions on the inactivation and removal of model organisms Phi6 and E. coli from hands and persistence in rinse water. PLOS ONE. 2017 Feb 23;12(2):e0172734. (Search Google Scholar; Export Citation as EndNote)

10. Rabie T, Curtis V. Handwashing and risk of respiratory infections: a quantitative systematic review. Tropical Medicine & International Health. 2006;11(3):258–67. (Search Google Scholar; Export Citation as EndNote)

13. Curtis V, Cairncross S. Effect of washing hands with soap on diarrhoea risk in the community: a systematic review. The Lancet Infectious Diseases. 2003 May 1;3(5):275–81. (Search Google Scholar; Export Citation as EndNote)

14. Pickering AJ, Boehm AB, Mwanjali M, Davis J. Efficacy of waterless hand hygiene compared with handwashing with soap: a field study in Dar es Salaam, Tanzania. The American Journal of Tropical Medicine and Hygiene. 2010 Feb 1;82(2):270–8. (Search Google Scholar; Export Citation as EndNote)

16. Eggers M, Eickmann M, Kowalski K, Zorn J, Reimer K. Povidone-iodine hand wash and hand rub products demonstrated excellent in vitro virucidal efficacy against Ebola virus and modified vaccinia virus Ankara, the new European test virus for enveloped viruses. BMC Infectious Diseases. 2015 Sep 17;15(1):375. (Search Google Scholar; Export Citation as EndNote)

19. Boyce JM. Using Alcohol for Hand Antisepsis: Dispelling Old Myths. Infection Control & Hospital Epidemiology. 2000 Jul;21(7):438–41. (Search Google Scholar; Export Citation as EndNote)

22. McFarland J. The nephelometer: an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. JAMA. 1907 Oct 5;XLIX(14):1176–8. (Search Google Scholar ; Export Citation as EndNote)

23. Cheesbrough M. District Laboratory Practice in Tropical Countries. Cambridge University Press; 2006. 464 p. (Search Google Scholar ; Export Citation as EndNote)

24. Atlas RM. Handbook of Microbiological Media [Internet]. CRC Press; 2004 [cited 2019 Sep 4]. Available from: https://www.taylorfrancis.com/books/978042912932 (Search Google Scholar ; Export Citation as EndNote)

27. Babeluk R, Jutz S, Mertlitz S, Matiasek J, Klaus C. Hand hygiene – evaluation of three disinfectant hand sanitizers in a community setting. PLOS ONE. 2014 Nov 7;9(11):e111969. (Search Google Scholar ; Export Citation as EndNote)

28. Kampf G, Kramer A. Epidemiologic background of hand hygiene and evaluation of the most important agents for scrubs and rubs. Clinical Microbiology Reviews. 2004 Oct 1;17(4):863–93. (Search Google Scholar ; Export Citation as EndNote)

29. Mathur P. Hand hygiene: Back to the basics of infection control. Indian J Med Res. 2011 Nov;134(5):611–20. (Search Google Scholar ; Export Citation as EndNote)

33. McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clinical Microbiology Reviews. 1999 Jan 1;12(1):147–79. (Search Google Scholar ; Export Citation as EndNote)

34. Ahmed QA, Memish ZA, Allegranzi B, Pittet D. Muslim health-care workers and alcohol-based handrubs. The Lancet. 2006 Mar 25;367(9515):1025–7. (Search Google Scholar ; Export Citation as EndNote)

35. Fleischer W, Reimer K. Povidone-iodine in antisepsis – state of the art. DRM. 1997;195(Suppl. 2):3–9. (Search Google Scholar ; Export Citation as EndNote)
Esophagus extirpation in the surgical treatment of neglected stages of esophageal achalasia

Feruz Gafurovich NAZIROV, Zaynitdin Mahamatovich NIZAMKHODJAYEV, Ruslan Efimovich LIGAY, Aleksey Olegovich TSOI, Doniyor Bakhtiyarovich SHAGAZATOV, Elnar Ildarovich NIGMATULLIN and Kudratbek Bahtiyarovich BABADJANOV.

Republican Specialized Surgery Centre named after Academician V.Vakhidov, Tashkent city, Uzbekistan.

ABSTRACT

Aim. The surgical treatment experience of patients with neglected stages of esophageal achalasia has been presented in the article. Methods. The esophagus extirpation with simultaneous gastroesophagoplasty due to esophageal achalasia of stage III-IV was performed in 28 patients. Results. The results of the research, identifies indications for surgical intervention, features of intra- and postoperative complications, immediate and long-term results of esophageal extirpation. Cardiodilation remains the main treatment method for patients with esophageal achalasia, but its efficiency is significantly reduced in patients with neglected stages. Conclusion. Esophagus extirpation in patients with neglected stages of achalasia is pathogenetically reasonable surgical intervention when there is severe esophagoectasia and S-shaped deformity of the esophagus and cardi-esophageal junction. Further control randomized trials and multicentric studies should be performed.

INTRODUCTION

Esophageal achalasia is one of the most common neuromuscular diseases of the esophagus at which the dystrophy of the Auerbach’s plexus occurs. As a result, there is a disorder of the reflex of the cardia opening in response to a sip, the peristaltic activity of the esophagus is inhibited which leads to the development of severe esophagoectasia [1-4].

The etiopathogenesis of the disease still remains unclear. All treatment options are symptomatic and aimed at eliminating the main symptom - dysphagia. The main method of treatment is cardiodilation which is effective at any stages of the disease. However, in neglected cases, as well as in the recurrence of dysphagia, the effect of dilation is much less and surgical treatment is often necessary. There are more than 60 variants of surgical interventions for achalasia, most of which are numerous modifications of the Geller’s operation. They are aimed to an extra-mucosal dissection of the distal esophagus and the stomach cardia muscles for reducing the gradient of the esophagogastric pressure, which facilitates the passage of the cardia [4-6]. However, in patients with achalasia the complete absence of the cardia opening in response to the sip and the complete absence of peristaltic activity of the esophagus wall, come to the fore. Therefore, in stage IV of the disease a good effect from cardioplastic operations cannot be expected.

The esophagus extirpation remains one of the most complicated operations in thoraco-abdominal surgery which is characterized by trauma, duration, high risk of intraoperative and postoperative complications. In most cases it is performed at esophageal cancer. The main advantage of esophagus extirpation is a complete removal of the pathologically changed organ – the esophagus. There are isolated reports in the world literature on the experience of using the extirpation of the esophagus in patients with achalasia of the cardia, which can be considered the only radical method of surgical treatment of this category of patients [1-4, 7].
This study aimed to investigate the esophagus extirpation results in the surgical treatment of neglected stages of esophageal achalasia.

MATERIALS AND METHODS

Ethical approval

The review board and ethics committee of Republican Specialized Surgery Centre named after Academician V. Vakhidov approved the study protocol and informed consents were taken from all the participants.

Total of 28 esophagus extirpations due to the neglected stages of achalasia were performed at the Department of Esophagus and Stomach Surgery of the Republican Specialized Scientific and Practical Medical Center of Surgery from 1998 to 2018. There were 18 males (64.2%) and 10 females (35.8%) participated in the study. The age of patients ranged from 11 to 62 years. Achalasia of stage III was in 4 patients (14.3%) and stage IV in 24 patients (85.7%). When collecting anamnestic data it was determined that 2 patients (7.1%) had previously undergone esophagogiardiomyotomy, and 1 patient (3.6%) had previously undergone esophago-cardiomyotomy. The rest of patients were performed repeated courses of cardiodialation. The disease duration in all patients was more than 5 years.

All patients were performed a comprehensive examination which included endoscopic, radiopaque investigations, as well as Modern methods of radiation diagnostics (MSCT). Characteristic features along with the clinical presentation were evident esophagoectasia, the absence of peristaltic activity of the esophagus muscular wall, S-shape deformity of esophagus and cardia. The X-ray pattern of patients with neglected stages of achalasia stage IV is presented in Figure 1.

Modern methods of radiation diagnostics (MSCT) allow not only to make a diagnosis, but also to determine the features of topographic-anatomical ratio of the esophagus to the rest of the structures of the mediastinum and pleural cavities (Figure 2). This is important when mobilizing the esophagus from the mediastinum through abdomino-cervical approach which is limited for visualization.

Figure 1. X-ray pattern of the esophagus (achalasia of stage IV)
RESULTS

The main methods of patients treatment with achalasia are various cardiodilation options (pneumatic, hydroballoon). However, in patients with neglected III-IV stages when there is S-shaped deformity, both of the esophagus and the stomach cardia, the possibilities of dilatation are sharply limited and the restoration of food patency is short. Such patients have to be performed surgical treatment. Indications for the esophagus extirpation in our patients were:

- Dilatation inefficiency, i.e. directly unsatisfactory result when after repeated (5-7) sessions patients did not have a clinical effect – in 8 cases (28.6%);
- The impossibility of holding the dilator in the stomach which was evaluated on the basis of a comprehensive examination and was confirmed when trying to hold the dilator, when the risk of the esophagus injury exceeded the expected clinical effect – in 17 cases (60.7%);
- Stenotic reflux esophagitis of the lower third of the thoracic esophagus against the background of previously performed esophagocardiomyotomy – in 3 cases (10.7%).

There are 5 main factors in solving the issue of using esophageal extirpation in patients with neglected stages of achalasia:

1. Simultaneous performance of esophagoplasty. In all 28 cases the resection and recovery stage (esophagoplasty) were performed in one stage.
2. The choice of surgical approach. Abdomino-cervical approach was used in 27 patients (96.4%) and thoraco-abdomino-cervical approach was performed in 1 case (3.6%) because of the presence of concomitant pathology (echinococcosis of the middle lobe of the right lung) a simultaneous echinococcectomy from the lung was performed. The choice of the surgical approach nature was based on the fact that achalasia is a benign disease and does not require extensive lymphadenectomy, as the esophageal cancer, and therefore it is not advisable to use traumatic thoracic approach.
3. Volume of the esophagus resection (extirpation or resection). In patients with neglected stages of achalasia, esophagoectasia of all parts of the esophagus is noted due to dystrophy of the Auerbach’s plexus. In the presence of indications for radical surgery it is necessary to remove almost the entire esophagus. Therefore, in all cases we performed the extirpation of the esophagus while leaving only a part of the cervical esophagus (3-4 cm) which was enough to form an anastomosis on the neck.
4. Method of esophagoplasty. When choosing the method of esophagoplasty, we preferred the use of an isoperistaltic gastric tube from the greater curvature of the stomach which was used in 24 patients. Only in 4 patients we used the left half of the colon to create a transplant due to the impossibility of gastroplasty.
5. Level of esophageal anastomosis application (intrapleural or extracavitary cervical). The solution of this issue is debatable only in patients with esophageal cancer. In all cases a cervical extracavitary esophageal anastomosis was formed in patients with achalasia.

The stages of the esophagus extirpation with gastroplasty have been shown in figure 3.
Figure 3. The stages of the esophagus extirpation with gastroplasty. A= Mobilization of the esophagus after diaphragmotomy. B= The extracted esophagus with mobilized stomach. C= The formed gastrotransplant.

Figure 4. The extracted macro-preparation. A= The mobilized esophagus. B= The extracted macro-preparation.
Complications of the esophagus extirpation in patients with neglected stages of achalasia are divided into intraoperative, immediate and late postoperative complications. The difficulty of the esophagus extirpation in patients with neglected stages of achalasia is in the difficulty and danger of the esophagus mobilization through the abdomino-cervical approach which are caused by severe esophagectasia and periesophagitis. In this regard, we observed the following intraoperative complications: bleeding from the mediastinum in 5 (17.8%) which was stopped intraoperatively by a mediastinal plugging; injury of the mediastinal pleura in 14 (50%) which required additional drainage of the pleural cavities; injury of the left recurrent nerve in 4 (6.3%) which caused a temporary loss of voice and a disorder of the swallowing act and which was normalized during the first 6 months after the operation against the background of therapy in the ENT specialists.

The following complications were observed in the immediate postoperative period: bronchopulmonary complications in 5 patients (17.8%): pneumonia in 2 patients, exudative pleurisy in 3 patients and specific complications in 1 patient (3.6%) had the esophagogastro-anastomosis failure.

All complications were stopped by conservative measures. No lethal outcomes were observed. All 28 patients were examined in the long-term period, in terms from 6 months to 20 years. Only in 2 cases (7.2%) cicatricial narrowing of esophagogastrostomy was diagnosed which required repeated bougienage and dilatation courses with a good clinical effect.

CONCLUSION

The main treatment method for the patients with achalasia remains cardiodilation which belongs to the minimally invasive methods and allows ensuring adequate restoration of food patency. However, in patients with neglected stages its efficiency is significantly reduced, and the frequency of recurrent dysphagia is increased. In patients with neglected stages of achalasia when the peristaltic activity of the esophagus is completely lost severe esophagectasia is developed, as well as S-shaped deformation of the esophagus and the cardia itself. The operation of choice for these patients is the esophagus extirpation with simultaneous gastroesophagoplasty and the formation of extracavitary esophagoplasty in the neck. Compliance with all principles of gastroesophagoplasty will minimize the risk of dangerous intraoperative and postoperative complications. Further control randomized trials and multicentric studies should be performed. Though the represented study is a single center results and control randomized trials and multicentric studies should be performed.

DECLARATIONS

Acknowledgements
This work was supported by “Republican Specialized Surgery Centre named after Academician V. Vakhidov”, Tashkent. Uzbekistan.

Authors’ Contributions
All authors contributed equally to this work.

Competing interests
The authors declare that they have no competing interests.

REFERENCES

Systematic review on avian immune systems

Mastewal BIRHAN

College of Veterinary Medicine and Animal Science, Department Veterinary Paraclinical Studies, University of Gondar, Ethiopia

ABSTRACT

Aim. The aim of this review paper is too summarized and compares avian immune systems to the other domestic animals as comparative immunology type of review. Appreciation of the avian immune systems and their functions are very critical for disease diagnostics and new vaccine developments. Some of the avian immune systems are differ from mammalian immune systems, based on their production sources of immune cells like B-cells production site bursa of fabrics, but in mammal is bone marrow. When we see the antibody type of birds; there are three principal classes of antibodies: IgM, IgG, IgY and IgA. Antibody diversity is achieved by gene re-arrangement. The other effector immune cell of birds is T cells. There are two distinct pathways that are α/β and γ/δ, avian T-cell diversity is probable made through combinatorial and functional mechanisms. Recently, genes of several avian cytokines have been cloned and expressed. A number of naturally occurring viruses cause immunosuppression in chickens. Conclusion. There is much current interest in understanding the mechanisms of immunosuppression and developing strategies to enhance immune responsiveness in commercial poultry.

INTRODUCTION

One of the wonderful rules in the poultry industry is to hardly working on disease and predator control, good institutional linkage, and with good management from the “healthy birds it is possible to increased high productive efficiency, capacity and with it, economic profitability” [1]. Scientific research on poultry immunology and the diseases affecting avian species is not a new concept [2]. But, more recently, the chicken was the first agricultural species as an income source for which indicted by a genome sequence map [3]. Meaningful what specific immune molecules are encoded in the chicken genome delivers an outstanding background to form and magnify our information on the avian immune systems [2]. Comparable other avian immune systems, the immune system of chickens is made up of two types of mechanisms non-specific and specific [4]. The potential pathogen and other risks facing mechanisms are slight different from those come across by mammals. It is therefore essential that mechanisms be available to combat invading bacterial, viral and parasitic pathogens and to destroy neoplastic or other altered cells. It is also essential in birds, as in mammals, that the resulting immune response be regulated to ensure that it is adequate in quantity and quality [5].

We need to understand the chicken immune system, to familiarize you with those defense mechanisms. The bursa of Fabricius and the thymus organs are the central lymphoid organs in the chicken, essential to the development of adaptive immunity [6]. In bird’s poor of all bursal lymphoid tissue, but still holding a normal thymus, no circulating antibody was detected after challenge with different antigens. Delayed hypersensitivity reactions to tuberculin or vaccinia virus (VACV) were nearly completely inhibited [7].

From the pronounced important avian organs, gut-associated lymphoid tissue is one of the organ that contains functionally immature T and B lymphocytes at hatch, and that function is achieved during the first 2 weeks of age as demonstrated by mRNA expression of both ChIL-2 and ChIFNγ confirmed by Bar-Shira et al. [8]. The gut is a vital organ system which makes up two equally important functions, that are digestion systems and host defiance [9]. When we address the chickens immune systems, the innate immunity includes physical barriers (skin, mucus coat of the GI tract), specific molecules (agglutinins, precipiacute phase proteins, lysozyme), phagocytic function of phagocytes (macrophages and neutrophils), and lysing activity of a class of lymphocytes called natural killer (NK) cells [10].

In females birds, may improve their reproductive victory by mediating brotherly competition and growth of offspring by means of differential hormone transfer to the egg yolk [11] [12] and [13]. For example, differential
transfer of steroids to eggs within the same grasp may alleviate or intensification the effect of hatching asynchrony as yolk steroids enhance nesting growth and competition [14] and [13]. Yolk testosterone was also present in the eggs of female canaries that were kept without a male, indicating that it is of maternal origin [11]. Birds are born with an imperfect immune system and young chicks have to rely on maternal antibodies and the innate immune defiance system to fight off pathogens [15].

While the avian system shares several similarities with mammalian systems, there are differences in the genes and molecules involved, the cells and organs involved, as well as the functional mechanisms. Chickens, for example, have a different assortment of Toll-like receptors, defensins, chemokines and antibodies. Birds do not have eosinophils though the functional corresponding to the mammalian neutrophil is the avian heterophil. Birds do not have lymph nodes, but do have a Bursa of Fabricius, which mammals do not. The mechanisms by which the different receptors are generated are also fundamentally different [16]. Therefore, the aim of this review paper are conparing and analyzing of how the avian immune systems, structures organization, cells and organs differ from the other domestic animal immune systems.

OVERVIEW OF THE AVIAN IMMUNE SYSTEMS

Studies that comprehensive study type, as a comparative method to the immunology with an gratefulness for physiological ecology and evolution are defining an important new field in biology-ecological immunology [17]. Though in wide-ranging terms the avian immune response is strangely similar to that of mammals, when one looks at specifics birds have a different repertoire of immune organs, cells and molecules compared to those characterized in mammals.

The unique structures of chickens are adversely distresses by heat stress, so, due to this impressions reeducations of productive performance, immune response, survival and profitability of fast growing chickens [18]. Beyond the beneficial features, the risk regarding the development of antimicrobial resistance and transference of antibiotic resistance genes from animal to human microbiliated the European Union to ban the application of antibiotics as growth promoters since at January 2006, which was followed by the other parts of the world including North America [19].

Avian are extremely vulnerable to varies infection by opportunistic pathogens during the first few days after hatching [20]. In avian species, active immunity encompasses both humoral and cell-mediated immune (CMI) responses [21]. The avian embryo provides numerous compensations for studies on development of the immune system [22]. The bird egg is worthily adapted to house, feed, and protect the developing embryo. The outer lime-flavored shell and adherent shell membranes provide a physical barrier that excludes most microorganisms, but permits free exchange of respiratory gases [23]. Interior to the shell membranes is a thick zone of albumen that provides a sterile fluid medium for the free growth and morphogenesis of the embryo and the extra embryonic membranes. In the center of the egg is the yolk mass that will nourish the embryo through the incubation period [24].

Commonly, Birds are lack organized lymph nodes, yet have the Bursa of Fabricius. Birds lack neutrophils and functional eosinophils, yet have a distinct group of polymorph nuclear granulocytes known as heterophil. Birds also have a different repertoire of cytokines, chemokines, Toll-like receptors, defensins and integrin's [25].

INNATE IMMUNE SYSTEMS

Innate cells

The innate immune system develops in the bone marrow (BM) from common myeloid progenitors (CMPs). Due to the expression of AR in hematopoietic progenitors, there is reason to believe testosteronemay play an important role in shaping the immune cell repertoire even prior to the cells leaving the BM [26].

Macrophages

Macrophages instigate from bone marrow stem cells by differentiating into monoblasts, promonocytes, and monocytes. However monocytes establish foremost phagocytic cellular component in chicken blood, tissue macrophages are extensively dispersed and present in almost every organ. Monocyte cultures from peripheral blood leukocytes can be established by incubating the leukocyte fraction on a solid substrate such as Petri dishes or glass coverslips. The adherent blood monocyte cultures can then be established by incubation and washing off the non-adherent cell fractions [27]. The two most commonly used avian macrophages cell lines are
MQ-NCSU, and HD11, an avian myelocytomatosis virus (MC29) transformed chicken macrophage-like cell line [28]. The MQ-NCSU cell line was established from spleen of a broiler-type chicken experimentally challenged with the JM/102W strain of Marek’s disease virus. The cultural, morphological and functional characteristics of the MQ-NCSU cell line imply that this is a malignant-transformed chicken cell line belonging to the mononuclear phagocyte lineage. Avian macrophages harvest chemotactic cytokines of both macrophage inflammatory protein (MIP) families. The chicken MIP-1 and MIP-2 chemokines have the identical amino acid motifs as mammalian chemokines: adjacent cysteine’s (CC) in the MIP-1 chemokines and cysteine’s separated by another amino acid (CXC) in the MIP-2 family. The chicken MIP-2 family chemokine is currently designated as 9E3/CEF4. It has high homology to mammalian interleukin (IL)-8 and is abundantly expressed by activated peripheral blood monocytes ([29]; [30] and [31]).

TLR

Pattern recognition receptors (PRRs) are a serious component of pathogen recognition in both mammals and chickens [32]. Toll-like receptors (TLRs), a main family of PRRs, are expressed in chicken intestinal tissues and the local immune cells have been shown to respond to bacterial ligands [33]. Influxes of heterophil as well as increases in cytokines and chemokines are evident [34] and [35] and are thought to contribute to the pathology detected. However, once chicks are more than a few days old, S. Typhimurium persistently colonizes their intestines in the absence of pathology [36], signifying that maturity of host defenses contribute to the deficiency of clinical signs.

In chickens, it has been established that heterophil constitutively express TLR2A, TLR2B, TLR1/6/10 mRNA and that heterophil isolated from neonatal chicks and exposed to LTA undergo an oxidative burst [37]. There are also data to suggest that CD14 and TLR2 mediate LTA-stimulated oxidative burst in heterophil [37]. Chicken TLR3 expression pattern appears to be similar to what is observed in mammals [33]. For example, chicken heterophil express TLR3 and are approachable to poly I:C, demonstrated by an induced oxidative burst and degranulation of the stimulated heterophil, which may be mediated by a signalling pathway involving phospholipase C, phosphatidylinositol 3-kinase and intracellular Ca2⁺ [38]. In contrast, others have confirmed the poor ability of poly I:C to stimulate nitric oxide (NO) production in chicken monocytes, while HD11cells, a chicken macrophage cell line, were readily stimulated to produce NO by poly I:C [34] and [39].

The first groups of TLR are expressed on the cell surface and recognize primarily cell-surface PAMPs. They include TLR1, TLR2, TLR4–6 and TLR10 in human and TLR1 in mice. There are direct chicken orthologous of mammalian TLR4 and TLR5 [40] and [33]. In mammals, there is a single TLR2 gene, and the genes encoding TLR1, 6 and 10 lie in a single locus. Mammalian TLR2 forms functional heterodimers with at least TLR1 and TLR6, allowing recognition of a wider panel of pathogen associated molecular patterns (PAMPs). At the equivalent locus to the mammalian TLR1, 6 and 10 locus, the chicken genome encodes only two genes, TLR1LA and TLR1LB [41] and [42]. Avian TLR repertoire and the response to various agonists [43]. Toll-like receptors (TLRs) are important for eliciting innate immunity in animals by playing an essential role as pattern recognition receptors that detect infectious pathogens by recognizing the conserved molecular structures known as pathogen associated molecular patterns [44]. There are ten avian toll-like receptors and that five of these, TLR2a, 2b, 3, 4, 5 and 7, are clear orthologous to TLRs found in mammals [45]. The non-mammalian TLR21 exists in many species of birds, fishes, and frogs [46] and [47]. As a homologue of mammalian TLR9, TLR21 can recognize synthetic oligo-deoxy-ribo-nucleo-nucleotides (ODN) and DNA viruses that contain CpG motifs, which further trigger the innate immune response [46] and [48]. The RLR family encompasses three members: RIG-I, melanoma differentiation-associated gene 5 (MDA5) and research laboratory of genetics and physiology 2 (LGP2), which are located in the cytoplasm.

AVIAN ADAPTIVE IMMUNITY

Cell mediated immunity and humoral immunity

Chicken αβ T cells express either CD4 or CD8 accessory molecules, whereas most of the γδ T cells do not [49]. The cytotoxic T lymphocyte response can decrease viral shedding in mildly pathogenic avian influenza viruses, but provides doubtful protection against HPAI. Influenza viruses can directly affect the immune response of infected birds, and the role of the Mx gene, interferon’s, and other cytokines in protection from disease remains unknown [50]. Avian T cell progress has emerged with the use of monoclonal and functional antibodies to elucidate T cell differentiation antigens and molecular and functional explanations of mammalian
T cell receptors (TCRs) [51]. Avian T cells bearing a γδ TCR are the first to be generated during ontogeny and they comprise up to 50% of the recirculating T-cell pool in mature birds [52]. Progress of B cells in chickens proceeds via a series of disconnected developmental phases that includes the maturation of committed B cell progenitors in the specialized microenvironment of the bursa of Fabricius [53]. Three classes of chicken immuno globulins have been identified immunochemically [54] and genetically [55] as homologues to the mammalian IgM, IgA and IgG, and their organizational properties have been reviewed in more detail elsewhere [56]. The intestine is a complex tissue that includes a major immune constituent. Indeed, the numbers of immune cells found in intestinal tissues exceed the numbers found in the rest of the body [57] and [58]. Expression of selected genes involved in pathogen detection and the innate immune response were profiled in caecal tissues by quantitative RT-PCR. TLR4 and TLR21 gene expression was transiently increased in response to both bacterial species [59] and [60]. Defense of the intestinal mucosal surface from enteric pathogens is initially mediated by secretory IgA (SIgA) [61].

Three classes of chicken immunoglobulins have been identified immunochemically [62, 63] and genetically [64] as homologues to the mammalian IgM, IgA and IgG and their structural properties have been reviewed in more detail elsewhere [66]. Chicken IgM is structurally and functionally homologous to its mammalian counterpart, being current in serum as a high molecular weight pentamer of m2L2 units and being the first antibody generated during a primary antibody response. IgM is also the major class of immunoglobulin expressed on the surface of chicken B lymphocytes [67].

Chemokines and Cytokines

Interferon’s (IFNs) are a family of multifunctional cytokines with significant roles in cellular resistance against viral infection [68]. In response to virus invasion, host pattern recognition receptors (PRRs) detect pathogen associated molecular patterns (PAMPs) and subsequent activation of innate immune system through retinoic acid inducible gene I (RIG-I) like receptors (RLRs)-MAVS-dependent IFN signaling or toll-like receptors (TLRs)-TRIF/MyD88-dependent IFN signaling [69], eventually, inducing the expression of type I IFNs. IFNs then bind their cognate receptors, triggering a signaling cascade that outcomes in the expression of abundant interferon-stimulated genes (ISGs) by the JAKSTAT signaling pathway, various of which possess antiviral properties [70] and [71]. Interferon regulatory factors (IRFs), a family of transcription factors, play authoritative roles in the regulation of IFN expression during viral infection [72]. To date, 9 IRF genes (IRF1-9) have been described in mammals, a tenth (IRF10) is present in numerous avian species and a total of 11 IRFs (IRF1-11) have been identified in fish [68].

CONCLUSION AND RECOMMENDATIONS

The chicken, perhaps surprisingly, has made several influential contributions towards our understanding of immune responses as comparable way. Notwithstanding this, before the chicken genome sequence, our ability to study immune systems in detail in birds is appropriate and also in our thoughtful of the immune gene catalog. There are still gaps, both in the chicken immuno systems and their catalog. In comprehensive study is well important by comparing of birds immune systems with the other animals. Both innate and adaptive immune responses, with the latter including both cell-mediated and humoral immune responses, leading to address and increases our knowledge about chicken’s immune activity. However, looking at the organs, cells, and molecules of the immune response in birds, it appears that mammals and birds accomplish the equivalent overall responses—often in quite different ways. Instead, we concentrate on the basic immune response, as well as a description of the major cell types and major areas where the cells and molecules of the immune response differ from those of mammals. Generally, the immune system of the chicken is very helpful in avoiding disease and helping to insure maximum productive potential is realized. We must learn how to take advantage of all parts of the system when designing health programs. Based on the above information the following recommendation will be forwarded:

- Researcher should be focus on the avian immune systems and their role of contributions, and the delineation of the bursal and thymus-derived arms of the immune system.
- The genes of several avian cytokines have been cloned and expressed; so that scientists would be given an attention for new disease resistant gene formed.
- The researcher should be emphasis on current attentiveness in thoughtful the mechanisms of immunosuppression and developing approaches to advance immune responsiveness in commercial poultry.
REFERENCES

18. Attia, Y., et al., Responses of productive, physiological and immunological traits of growing Fayoumi males subjected to heat stress to vitamin C and/or E and organic Zinc supplementation.

DECLARATIONS

Acknowledgment
The authors’ heartfelt thanks to University of Gondar, research and community service v/president office, college Veterinary Medicine and Animal sciences for the financial and resource supporting.

Authors' contributions
Mastewal Birhan conceived the review, coordinated the overall activity, and write and submit the manuscript.

Availability of data and materials
Data will be made available up on request of the primary author

Consent to publish
Not applicable.

Competing interests
The authors declare that they have no competing interests.

64. Ratcliffe, M. and E. Paramithiotis. The end can justify the means. in Seminars in Immunology, 1990.

Instructions for Authors

Manuscript as Original Research Paper, Review and Case Reports are invited for rapid peer-review publishing in the Journal of Life Science and Biomedicine. Considered subject areas include: Biocontrol, Biochemistry, Biotechnology, Bioengineering, Neurobiology... view full aims and scope

Submission
The manuscript and other correspondence should preferentially be submit online. Please embed all figures and tables in the manuscript to become one single file for submission. Once submission is complete, the system will generate a manuscript ID and will send an email regarding your submission. Meanwhile, the authors can submit or track articles via editors@jlsb.science-line.com ; jlsb.editors@gmail.com. All manuscripts must be checked (by English native speaker) and submitted in English for evaluation (in totally confidential and impartial way).

Supplementary information
The online submission form allows supplementary information to be submitted together with the main manuscript file and covering letter. If you have more than one supplementary files, you can submit the extra ones by email after the initial submission. Author guidelines are specific for each journal. Our Word template can assist you by modifying your page layout, text formatting, headings, title page, image placement, and citations/references such that they agree with the guidelines of journal. If you believe your article is fully edited per journal style, please use our MS Word template before submission. Supplementary materials may include figures, tables, methods, videos, and other materials. They are available online linked to the original published article. Supplementary tables and figures should be labeled with a "S", e.g. "Table S1" and "Figure S1". The maximum file size for supplementary materials is 10MB each. Please keep the files as small possible to avoid the frustrations experienced by readers with downloading large files.

Submission to the Journal is on the understanding that
1. The article has not been previously published in any other form and is not under consideration for publication elsewhere;
2. All authors have approved the submission and have obtained permission for publish work.
3. Researchers have proper regard for conservation and animal welfare considerations. Attention is drawn to the 'Guidelines for the Treatment of Animals in Research and Teaching'. Any possible adverse consequences of the work for populations or individual organisms must be weighed against the possible gains in knowledge and its practical applications. If the approval of an ethics committee is required, please provide the name of the committee and the approval number obtained.

Ethics Committee Approval
Experimental research involving human or animals should have been approved by author's institutional review board or ethics committee. This information can be mentioned in the manuscript including the name of the board/committee that gave the approval. Investigations involving humans will have been performed in accordance with the principles of Declaration of Helsinki. And the use of animals in experiments will have observed the Interdisciplinary Principles and Guidelines for the Use of Animals in Research, Testing, and Education by the New York Academy of Sciences, Ad Hoc Animal Research Committee. If the manuscript contains photos or parts of photos of patients, informed consent from each patient should be obtained. Patient’s identities and privacy should be carefully protected in the manuscript.

Graphical Abstract
Authors should provide a graphical abstract (a beautifully designed feature figure) to represent the paper aiming to catch the attention and interest of readers. Graphical abstract will be published online in the table of content. The graphical abstract should be colored, and kept within an area of 12 cm (width) x 6 cm (height) or with similar format. Image should have a minimum resolution of 300 dpi and line art 1200dpi. **Note:** Height of the image should be no more than the width. Please avoid putting too much information into the graphical abstract as it occupies only a small space. Authors can provide the graphical abstract in the format of PDF, Word, PowerPoint, jpg, or png, after a manuscript is accepted for publication. For preparing a Professional Graphical Abstract, please click here.
Presentation of the article

Main Format
First page of the manuscripts must be properly identified by the title and the name(s) of the author(s). It should be typed in Times New Roman (font sizes: 17pt in capitalization for the title, 10pt for the section headings in the body of the text and the main text, double spaced, in A4 format with 2cm margins (both doc./docx formats). All pages and lines of the main text should be numbered consecutively throughout the manuscript. Abbreviations in the article title are not allowed. Manuscripts should be arranged in the following order:
1. TITLE (brief, attractive and targeted)
2. Name(s) and Affiliation(s) of author(s) (including post code and corresponding Email)
3. ABSTRACT
4. Key words (separate by semicolons; or comma,)
5. Abbreviations (those used throughout the manuscript)
6. INTRODUCTION (clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution)
7. MATERIAL AND METHOD (should be complete enough to allow experiments to be reproduced)
8. RESULTS
9. DISCUSSION
10. CONCLUSION
11. DECLARATIONS (Acknowledgements, Consent to publish, Competing interests, Authors’ contributions, and Availability of data etc.)
12. REFERENCES
13. Tables
14. Figures
15. Graphs

Results and Discussion can be presented jointly. Discussion and Conclusion can be presented jointly.

Article Sections Format
Title should be a brief phrase describing the contents of the paper. The first letter of each word in title should use upper case. The Title Page should include the author(s)’s full names and affiliations, the name of the corresponding author along with phone and e-mail information. Present address (es) of author(s) should appear as a footnote.

Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The abstract should be 150 to 300 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited.

Following the abstract, about 3 to 8 key words that will provide indexing references should be listed.

Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Material and Method should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer’s name and address. Subheadings should be used. Methods in general use need not be described in detail. The ethical approval for using human and animals in the researches should be indicated in this section with a separated title.

Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the author(s)’s experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. In case of the effectiveness of a particular drug or other substances as inhibitor in biological or biochemical processes, the results should be provided as IC50 (half maximal inhibitory concentration) or similar appropriate manner.

Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

Conclusion should be brief and tight about the importance of the work or suggest the potential applications and extensions. This section should not be similar to the Abstract content.

Declarations including Acknowledgements, Author contribution, Competing interests, Consent to publish, and Availability of data etc.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph forms or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or PowerPoint before pasting in the Microsoft Word manuscript file. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.
Declarations

Please ensure that the sections: Ethics (and consent to participate, if any), Acknowledgements, Author contribution, Competing interests, Consent to publish, Availability of data and materials are included at the end of your manuscript in a Declarations section.

Acknowledgements

We encourage authors to include an Acknowledgements section. Please acknowledge anyone who contributed towards the study by making substantial contributions to conception, design, acquisition of data, or analysis and interpretation of data, or who was involved in drafting the manuscript or revising it critically for important intellectual content, but who does not meet the criteria for authorship. Please also include their source(s) of funding. Please also acknowledge anyone who contributed materials essential for the study. Authors should obtain permission to acknowledge from all those mentioned in the Acknowledgements. Please list the source(s) of funding for the study, for each author, and for the manuscript preparation in the acknowledgements section. Authors must describe the role of the funding body, if any, in study design; in the collection, analysis, and interpretation of data; in the writing of the manuscript; and in the decision to submit the manuscript for publication.

Author contribution

For manuscripts with more than one author, JLSB require an Author Contributions section to be placed after the Acknowledgements section. An 'author' is generally considered to be someone who has made substantive intellectual contributions to a published study. To qualify as an author one should 1) have made substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data; 2) have been involved in drafting the manuscript or revising it critically for important intellectual content; and 3) have given final approval of the version to be published. Each author should have participated sufficiently in the work to take public responsibility for appropriate portions of the content. Acquisition of funding, collection of data, or general supervision of the research group, alone, does not justify authorship.

We suggest the following format/example (please use initials to refer to each author's contribution): AB carried out the molecular genetic studies, participated in the sequence alignment and drafted the manuscript. JY carried out the immunoassays. MT participated in the sequence alignment. ES participated in the design of the study and performed the statistical analysis. FG conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

For authors that equally participated in a study please write 'Both authors contributed equally to this work.' Contributors who do not meet the criteria for authorship should be listed in an acknowledges section.

Competing interests

Competing interests that might interfere with the objective presentation of the research findings contained in the manuscript should be declared in a paragraph heading "Competing interests" (after Acknowledgment or Author Contribution sections). Examples of competing interests are ownership of stock in a company, commercial grants, board membership, etc. If there is no competing interest, please use the statement "The authors declare that they have no competing interests."

Journal of Life Science and Biomedicine adheres to the definition of authorship set up by The International Committee of Medical Journal Editors (ICMJE). According to the ICMJE authorship criteria should be based on 1) substantial contributions to conception and design of, or acquisition of data, or analysis and interpretation of data, 2) drafting the article or revising it critically for important intellectual content and 3) final approval of the version to be published. Authors should meet conditions 1, 2 and 3. It is a requirement that all authors have been accredited as appropriate upon submission of the manuscript. Contributors who do not qualify as authors should be mentioned under Acknowledgements.

Consent to publish

Please include a 'Consent for publication section in your manuscript. If your manuscript contains any individual person's data in any form (including individual details, images or videos), consent to publish must be obtained from that person, or in the case of children, their parent or legal guardian. All presentations of case reports must have consent to publish. You can use your institutional consent form or our consent form if you prefer. You should not send the form to us on submission, but we may request to see a copy at any stage (including after publication). If your manuscript does not contain any individual persons data, please state "Not applicable" in this section.

Change in authorship

We do not allow any change in authorship after provisional acceptance. We cannot allow any addition, deletion or change in sequence of author name. We have this policy to prevent the fraud.

Data deposition

Nucleic acid sequences, protein sequences, and atomic coordinates should be deposited in an appropriate database in time for the accession number to be included in the published article. In computational studies where the sequence information is unacceptable for inclusion in databases because of lack of experimental validation, the sequences must be published as an additional file with the article.

REFERENCES

A JLSB reference style for EndNote may be found here. However, we prefer Vancouver referencing style that is often used in medicine and the natural sciences. Uniform requirements for manuscripts submitted to Biomedical Journals, published by International Committee of Medical Journal Editors, includes a list with examples of references https://www.nlm.nih.gov/bsd/uniform_requirements.html in the Vancouver style.

References should be numbered consecutively and cited in the text by number in square brackets [1, 2] instead of parentheses (and not by author and date). References should not be formatted as footnotes. Avoid putting personal communications and unpublished observations as references. All the cited papers in the text must be listed in References. All the papers in References must be cited in the text. Where available, URLs for the references should be provided.
Examples (at the text, blue highlighted)

Smit [1] ...; Smit and Janak [2]...; Nurai et al. [3] reported that; ... [1], --- [2, 3], --- [3-7]. The references at the end of this document are in the preferred referencing style. Give all authors' names; do not use "et al." unless there are six authors or more. Use a space after authors' initials. Papers that have not been published should be cited as "unpublished". Papers that have been accepted for publication, but not yet specified for an issue should be cited as “to be published”. Papers that have been submitted for publication should be cited as “submitted for publication”. Capitalize only the first word in a paper title, except for proper nouns and element symbols. For papers published in translation journals, please give the English citation first, followed by the original foreign-language citation.

Acceptable Examples (at References section)

For Journals:

For In press manuscripts (maximum 2):

For symposia reports and abstracts:

For Conference:
Skinner J, Fleener B and Rinchiuso M. 2003. Examining the Relationship between Supervisors and Subordinate Feeling of Empowerment with LMX as A Possible Moderator. 24th Annual Conference for Industrial Organizational Behavior. DOI, Link

For Book:

For Web Site:

Nomenclature and Abbreviations
Nomenclature should follow that given in NCBI web page and Chemical Abstracts. Standard abbreviations are preferable. If a new abbreviation is used, it should be defined at its first usage. Abbreviations should be presented in one paragraph, in the format: "term: definition". Please separate the items by ";". E.g. ANN: artificial neural network; CPS: closed form solution; ...
Abbreviations of units should conform with those shown below:

Decilitre dl	Kilogram kg	
Milligram mg	hours h	
Micrometer mm	Minutes min	
Molar mol/L	Millilitre ml	
Percent %	"	"

Other abbreviations and symbols should follow the recommendations on units, symbols and abbreviations: in "A guide for Biological and Medical Editors and Authors (the Royal Society of Medicine London 1977). Papers that have not been published should be cited as "unpublished". Papers that have been accepted for publication, but not yet specified for an issue should be cited as “to be published”. Papers that have been submitted for publication should be cited as "submitted for publication".

Formulae, numbers and symbols
1. Typewritten formulae are preferred. Subscripts and superscripts are important. Check disparities between zero (0) and the letter 0, and between one (1) and the letter I.
2. Describe all symbols immediately after the equation in which they are first used.
3. For simple fractions, use the solidus (/), e.g. 10 / 38.
4. Equations should be presented into parentheses on the right-hand side, in tandem.
5. Levels of statistical significance which can be used without further explanations are *P < 0.05, **P < 0.01, and ***P < 0.001.
6. In the English articles, a decimal point should be used instead of a decimal comma.
7. Use Symbol fonts for "±"; “≤” and “≥” (avoid underline).
8. In chemical formulae, valence of ions should be given, e.g. Ca2+ and CO32-.
9. Numbers up to 10 should be written in the text by words. Numbers above 1000 are recommended to be given as 10 powered x.
10. Greek letters should be explained in the margins with their names as follows: Αα - alpha, Ββ - beta, Γγ - gamma, Δδ - delta, Εε - epsilon, Ζζ - zeta, Ηη - eta, Θθ - theta, Ιι - iota, Κκ - kappa, Λλ - lambda, Μμ - mu, Νν - nu, Ξξ - xi, Οο - omicron, Ππ - pi, Ρρ - rho, Σσ - sigma, Ττ - tau, Υυ - upsilon, Φφ - phi, Χχ - chi, Ψψ - psi, Ωω - omega. Please avoid using math equations in Word whenever possible, as they have to be replaced by images in xml full text.
Review/Decisions/Processing/Policy

Firstly, all manuscripts will be checked by Docol©, a plagiarism finding tool. The received papers with plagiarism rate of more than 30% will be rejected. Manuscripts that are judged to be of insufficient quality or unlikely to be competitive enough for publication will be returned to the authors at the initial stage. The remaining manuscripts go through a single-blind review process by external reviewers selected by section editor of JLSB, who are research workers specializing in the relevant field of study. One unfavourable review means that the paper will not be published and possible decisions are: accept as is, minor revision, major revision, or reject. The corresponding authors should submit back their revisions within 14 days in the case of minor revision, or 30 days in the case of major revision. Manuscripts with significant results are typically published at the highest priority. The editor who received the final revisions from the corresponding authors shall not be hold responsible for any mistakes shown in the final publication. The submissions will be processed free of charges for invited authors, authors of hot papers, and corresponding authors who are editorial board members of the Journal of Life Science and Biomedicine. This journal encourages the academic institutions in low-income countries to publish high quality scientific results, free of charges.

Plagiarism
Manuscripts are screened for plagiarism by Docol©, before or during publication, and if found (more than 30% duplication limit) they will be rejected at any stage of processing. If we discovered accidental duplicates of published article(s) that are determined to violate our journal publishing ethics guidelines (such as multiple submission, bogus claims of authorship, plagiarism, fraudulent use of data or the like), the article will be “Withdrawn” from SCIENCELINE database. Withdrawn means that the article content (HTML and PDF) is removed and replaced with a HTML page and PDF simply stating that the article has been withdrawn according to the Scienceline Policy on Published Article Withdrawal.

Date of issue
All accepted articles are published bimonthly around 25th of January, March, May, July, September and November, each year in full text on the internet.

The OA policy
Journal of Life Science and Biomedicine is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of Open Access.

Submission Preparation Checklist

- Authors are required to check off their submission's compliance with all of the following items, and submissions may be returned to authors that do not adhere to the following guidelines.
- The submission has not been previously published, nor is it before another journal for consideration (or an explanation has been provided in Comments to the Editor).
- The submission file is in Microsoft Word, RTF, or PDF document file format. Where available, URLs for the references have been provided.
- The text is single-spaced; uses a 12-point font; and all illustrations, figures, and tables are placed within the text at the appropriate points, rather than at the end. The text adheres to the stylistic and bibliographic requirements outlined in the Author Guidelines.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Scienceline Ltd is a limited liability non-profit non-stock corporation incorporated in Turkey, and also is registered in Iran. Scienceline journals that concurrently belong to many societies, universities and research institutes, publishes internationally peer-reviewed open access articles and believe in sharing of new scientific knowledge and vital research in the fields of life and natural sciences, animal sciences, engineering, art, linguistic, management, social and economic sciences all over the world. Scienceline journals include:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[Image]</td>
<td>[Image]</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
<tr>
<td>ISSN: 2228-7701; bi-monthly</td>
<td>ISSN: 2252-0430; bi-monthly</td>
<td>ISSN: 2251-9939; bi-monthly</td>
<td>ISSN: 2322-4789; Quarterly</td>
</tr>
<tr>
<td>View Journal</td>
<td>Editorial Board</td>
<td>View Journal</td>
<td>Editorial Board</td>
</tr>
<tr>
<td>Email: editors@ojaf.ir</td>
<td>Email: ojeu@ojeu.ir</td>
<td>Email: editors@jlj.science-line.com</td>
<td>Submit Online >></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[Image]</td>
<td>[Image]</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
<tr>
<td>ISSN: 2322-455X; Quarterly</td>
<td>ISSN: 2322-4568; Quarterly</td>
<td>ISSN: 2322-4770; Quarterly</td>
<td>ISSN: 2322-5114; Irregular</td>
</tr>
<tr>
<td>View Journal</td>
<td>Editorial Board</td>
<td>View Journal</td>
<td>Editorial Board</td>
</tr>
<tr>
<td>Email: editor@jwpr.science-line.com</td>
<td>Email: editor@wjv.science-line.com</td>
<td>Email: info@jemsopts.science-line.com</td>
<td>Submit Online >></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[Image]</td>
<td>[Image]</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
<tr>
<td>ISSN: 2383-1553; Irregular</td>
<td>ISSN: 2383-0948; Quarterly</td>
<td>ISSN: 2382-9907; Quarterly</td>
<td>ISSN: 2383-0980; Quarterly</td>
</tr>
<tr>
<td>View Journal</td>
<td>Editorial Board</td>
<td>View Journal</td>
<td>Editorial Board</td>
</tr>
<tr>
<td>Email: jaas@science-line.com</td>
<td>Email: ajses@science-line.com</td>
<td>Email: jabfr@science-line.com</td>
<td>Submit Online >></td>
</tr>
</tbody>
</table>