JLSB Journal of

J. Life Sci. Biomed. 4(3): 204-207, 2014

© 2014, Scienceline Publication

Life Science and Biomedicine

ISSN 2251-9939

Preparation Scale for Measuring Intellectual Understanding in Matrimony Life

Moosa Javdan*

Hormozgan University, Bandar Abbas, Iran

*Corresponding author's e-mail: Javdan4920@yahoo.com

ABSTRACT: This study designed a questionnaire to assess the level of understanding and consensus among Iranian couples. After the survey of 432 people of different social classes in the factors affecting the level of understanding and lack of understanding and sympathy for their spouses during the marriage, a questionnaire consisting of 72 items was prepared. Then, by performing an exploratory factor analysis, the number of items was reduced to 38 items and 3 factors. Findings from the analysis of the material obtained showed that the levels of understanding and sympathy couples can be divided into three groups: Findings from the analysis of the material obtained showed that the levels of understanding and sympathy couples can be divided into three groups: Secondly, merging and deleting items similar to 176 couples were selected randomly from among the people and do a confirmatory factor analysis of 30 items with 3 factors remained that the final form of the questionnaire showed a level of understanding and collaboration between Iranian couple and had internal validity and goodness of fit . The convergence validity of the questionnaire and other questions related to marital satisfaction and demonstrate the validity of this scale is appropriate.

Received 10 Jan. 2014 Accepted 10 Mar. 2014

Key words: Understanding, Consultation, Marriage and Designing Questionnaire

INTRODUCTION

Family as the primary social institution that plays an important role in the intellectual and happiness of individuals. Understanding between women and men is a condition that often men and women living together in a satisfying feeling that this feeling of understanding, acceptance and understanding of each other's expectations and feelings possible. Sense of understanding and harmony in married life is a process of thinking that life has a major impact on the thinking and behavior of couples. Adapted tastes and beliefs of men and women is result of close coordination and mental and intellectual personality [1]. They have a sense of satisfaction of being together, far more engaging and thought coordination of social, economic, religious and parenting. Studies have shown that couples collaboration has positive effects on aspects of personal, social their [2]. Other research suggests that the overall satisfaction of marital cohabitation resulting feelings of sympathy, intrapersonal and interpersonal factors that represent the couple's level of understanding [3].

Various factors may play a role in understanding and consensuses between spouses are some of the most important factors such as individual differences, understanding, intelligence, intellectual personality cultural factors, lifestyle, education, attitudes and beliefs, social, economic, cultural, religious, and sexual relations. Identify problems and conflicts between spouses and recognition solutions due to its complex and changing human behavior and individual differences are difficult, but identifying and providing solutions to solve such problems in Iranian families and their evaluation based on cultures, beliefs and behaviors is very important. Therefore, prepare a questionnaire for deeper and more accurate understanding of issues related to family life is important and necessary. Although there are many questionnaires and scales to measure marital adjustment that can evaluate maladjustment and identify factors that some of them include: Enrich marital inventory adjustment scale couples, evaluation of marital conflict, marital conflict stages, the level of marital satisfaction, conflict and dissatisfaction rate of married couples, conflict and dissatisfaction rate of married couples, marital satisfaction questionnaire, but none of these questionnaires and scales are not based on culture, belief, behavior and intellectual personality Iranian couples in new age. So, do not look so good. Because most of them are based on non-Iranian culture over past life of couple who may not be able to properly identify the factors leading to the understanding and proper coordination of new Iranian couples intellectual. The aim of this research is compilation, validity, reliability and standardization of questionnaires about intellectual level of understanding and harmony between Iranian couples.

MATERIALS AND METHODS

This research is a descriptive study which subjects described by reference to criteria relating to features of the couple had compiled an intellectual understanding and harmony. In the present study, the samples are all

married couples in Hormozgan in 2013. The sample consisted of 432 individuals, couples are selected through the available sampling. Thus, referring to those available from various social strata, economic, cultural, educational and occupational levels than they were asked about their marital factors listed in understanding and sympathy.

Preparing Research Tools:

In order to provide couples Understanding and collaboration questionnaire, 432 patients (211 men and 221 women) were selected to include different people from different social groups and they asked to listed the major factors affecting the intellection and lack of understanding and sympathy are mentioned in the marriage. After collecting the responses, the merger of similar items close together and unrelated factors, a measure of understanding and harmony thought graded on the 72-point Likert scale from 1 to 5 options, and then gave to 176 the subjects.

RESULTS

In order to derive understanding and sympathy couple of questions, an exploratory factor analysis with varimax rotation was performed using maximum likelihood and the results are as follows. With an initial exploratory factor analysis using principal components analysis with a varimax rotation, load factor, operating three times and laid on the 38 items had significant relationships are reported in Table 1.

After the factor analysis, three factors were extracted variance explained by each factor in Table 2, have been reported.

The above table shows that the first factor, the variance of 41.52 percent, 21.36 percent of the variance of the second factor and the third factor is predicted 15.86% of the variance after rotation. After factor analysis, items 3, 10, 17, 21, 22, 25, 30 and 35 were excluded based on criteria KMO. Table 3 showed items loading on each factor varimax after rotation. Table 3 showed loading factor of items on each factor after Varimax rotation. The final items of the questionnaire plus factor is introduced in this study was based solely on the remaining items. Due to the high loader factor, items that have the greatest factor loadings were remained. Factors obtained by questionnaire, with items that were included in each factor are shown in Table 4.

Relevant factor with respect to the related items were named follows:

Factor 1: Marriage expectations

Items that were in this factor, operating mostly in the expectations, wishes, limitations, emotional and psychological needs, and understand the extent of the wife's feelings to measure, for example, the current wife of the person is considered ideal. (Items 6, 7, 11, 15, 19, 27, 26, 31, 36 and 37).

Factor 2: Ideological issues and live models

Questions were on this factor mainly evaluate ideological issues in the operating model, life, family, culture, religion and communication skills and life include (items 1, 5, 8, 9, 12, 13, 18, 24, 28 and 34)

Factor 3: personality traits

Items related to factors such as personality characteristics (personality traits, intellectual maturation, flexibility, sensitivity and irritability, disciplined, stubborn and pessimistic), the measure that includes items 2, 4, 14, 16, 20, 23, 29, 32, 33 and 38).

Reliability and validity:

The validity of questionnaire supported by concepts of structural consistency, personality characteristics of infrastructure compatibility, feature and reflect the mood and personality adaptation rate, understanding and harmony of thought underlying and reflects the degree of adaptability, understanding and harmony of thought. Content validity of the conceptual components defined in accordance with the intellectual understanding and Consultation.

Table 1. KMO and other indices of factor analysis

Table 11 In-10 and other males of factor analysis				
KMO	0.931			
Bartlett's chi-square	1867.341			
DF	431			
Significant	0.000			

Table 2. Percent of the variance before rotation and after rotation of the four questionnaires

Factor	percent of the variance before rotation	Percent of the variance after rotation
First	31.45	41.52
Second	7.71	9.36
Third	3.65	5.86
total	42.81	56.74

Table 3. Loading factor on each of the three factors after varimax rotation

1 0.011 0.413 0.315 0.675 2 0.092 0.309 0.519 0.456 4 0.345 0.243 0.621 0.445 5 0.161 -0.491 0.031 0.321 6 0.734 0.013 0.160 0.435 7 0.398 -0.215 0.125 0.395 8 0.617 0.336 0.245 0.419 9 0.172 .395 0.197 0.338 11 0.687 -0.196 0.071 0.567 12 0.116 0.814 0.334 0.564 13 0.226 0.363 0.185 0.732 14 0.1391 0.258 0.497 0.543 15 0.765 0.099 0.034 0.439 16 0.185 0.138 0.723 0.650 18 0.304 0.439 0.262 0.671 20 0.161 -0.105	Item	Factor 1	Factor 1 Factor 2 Factor 3 Explained Variance item			
2 0.092 0.309 0.519 0.456 4 0.345 0.243 0.621 0.445 5 0.161 -0.491 0.031 0.321 6 0.734 0.013 0.160 0.435 7 0.398 -0.215 0.125 0.395 8 0.617 0.336 0.245 0.419 9 0.172 .395 0.197 0.338 11 0.687 -0.196 0.071 0.567 12 0.116 0.814 0.334 0.564 13 0.226 0.363 0.185 0.732 14 0.1391 0.258 0.497 0.543 15 0.765 0.099 0.034 0.439 16 0.185 0.138 0.723 0.650 18 0.304 0.439 0.263 0.419 19 0.393 0.078 0.252 0.671 20 0.161 -0.105					-	
4 0.345 0.243 0.621 0.445 5 0.161 -0.491 0.031 0.321 6 0.734 0.013 0.160 0.435 7 0.398 -0.215 0.125 0.395 8 0.617 0.336 0.245 0.419 9 0.172 .395 0.197 0.338 11 0.687 -0.196 0.071 0.567 12 0.116 0.814 0.334 0.564 13 0.226 0.363 0.185 0.732 14 0.1391 0.258 0.497 0.543 15 0.765 0.099 0.034 0.439 16 0.185 0.138 0.723 0.650 18 0.304 0.439 0.263 0.419 19 0.393 0.078 0.252 0.671 20 0.161 -0.105 0.461 0.790 23 0.112 0.319					·	
5 0.161 -0.491 0.031 0.321 6 0.734 0.013 0.160 0.435 7 0.398 -0.215 0.125 0.395 8 0.617 0.336 0.245 0.419 9 0.172 .395 0.197 0.338 11 0.687 -0.196 0.071 0.567 12 0.116 0.814 0.334 0.564 13 0.226 0.363 0.185 0.732 14 0.1391 0.258 0.497 0.543 15 0.765 0.099 0.034 0.439 16 0.185 0.138 0.723 0.650 18 0.304 0.439 0.263 0.419 19 0.393 0.078 0.252 0.671 20 0.161 -0.105 0.461 0.790 23 0.112 0.319 0.654 0.324 24 0.289 0.553						
6 0.734 0.013 0.160 0.435 7 0.398 -0.215 0.125 0.395 8 0.617 0.336 0.245 0.419 9 0.172 .395 0.197 0.338 11 0.687 -0.196 0.071 0.567 12 0.116 0.814 0.334 0.564 13 0.226 0.363 0.185 0.732 14 0.1391 0.258 0.497 0.543 15 0.765 0.099 0.034 0.439 16 0.185 0.138 0.723 0.650 18 0.304 0.439 0.263 0.419 19 0.393 0.078 0.252 0.671 20 0.161 -0.105 0.461 0.790 23 0.112 0.319 0.654 0.324 24 0.289 0.553 0.098 0.613 26 0.435 0.421						
7 0.398 -0.215 0.125 0.395 8 0.617 0.336 0.245 0.419 9 0.172 .395 0.197 0.338 11 0.687 -0.196 0.071 0.567 12 0.116 0.814 0.334 0.564 13 0.226 0.363 0.185 0.732 14 0.1391 0.258 0.497 0.543 15 0.765 0.099 0.034 0.439 16 0.185 0.138 0.723 0.650 18 0.304 0.439 0.263 0.419 19 0.393 0.078 0.252 0.671 20 0.161 -0.105 0.461 0.790 23 0.112 0.319 0.654 0.324 24 0.289 0.553 0.098 0.613 26 0.435 0.421 0.187 0.598 27 0.589 0.601						
8 0.617 0.336 0.245 0.419 9 0.172 .395 0.197 0.338 11 0.687 -0.196 0.071 0.567 12 0.116 0.814 0.334 0.564 13 0.226 0.363 0.185 0.732 14 0.1391 0.258 0.497 0.543 15 0.765 0.099 0.034 0.439 16 0.185 0.138 0.723 0.650 18 0.304 0.439 0.263 0.419 19 0.393 0.078 0.252 0.671 20 0.161 -0.105 0.461 0.790 23 0.112 0.319 0.654 0.324 24 0.289 0.553 0.098 0.613 26 0.435 0.421 0.187 0.598 27 0.589 0.601 0.143 0.398 28 0.155 0.521						
9 0.172 .395 0.197 0.338 11 0.687 -0.196 0.071 0.567 12 0.116 0.814 0.334 0.564 13 0.226 0.363 0.185 0.732 14 0.1391 0.258 0.497 0.543 15 0.765 0.099 0.034 0.439 16 0.185 0.138 0.723 0.650 18 0.304 0.439 0.263 0.419 19 0.393 0.078 0.252 0.671 20 0.161 -0.105 0.461 0.790 23 0.112 0.319 0.654 0.324 24 0.289 0.553 0.098 0.613 26 0.435 0.421 0.187 0.598 27 0.589 0.601 0.143 0.398 28 0.155 0.521 0.289 0.401 29 0.232 0.132						
11 0.687 -0.196 0.071 0.567 12 0.116 0.814 0.334 0.564 13 0.226 0.363 0.185 0.732 14 0.1391 0.258 0.497 0.543 15 0.765 0.099 0.034 0.439 16 0.185 0.138 0.723 0.650 18 0.304 0.439 0.263 0.419 19 0.393 0.078 0.252 0.671 20 0.161 -0.105 0.461 0.790 23 0.112 0.319 0.654 0.324 24 0.289 0.553 0.098 0.613 26 0.435 0.421 0.187 0.598 27 0.589 0.601 0.143 0.398 28 0.155 0.521 0.289 0.401 29 0.232 0.132 0.667 0.375 31 0.701 0.569						
12 0.116 0.814 0.334 0.564 13 0.226 0.363 0.185 0.732 14 0.1391 0.258 0.497 0.543 15 0.765 0.099 0.034 0.439 16 0.185 0.138 0.723 0.650 18 0.304 0.439 0.263 0.419 19 0.393 0.078 0.252 0.671 20 0.161 -0.105 0.461 0.790 23 0.112 0.319 0.654 0.324 24 0.289 0.553 0.098 0.613 26 0.435 0.421 0.187 0.598 27 0.589 0.601 0.143 0.398 28 0.155 0.521 0.289 0.401 29 0.232 0.132 0.687 0.375 31 0.701 0.569 0.059 0.568 32 0.151 0.363						
13 0.226 0.363 0.185 0.732 14 0.1391 0.258 0.497 0.543 15 0.765 0.099 0.034 0.439 16 0.185 0.138 0.723 0.650 18 0.304 0.439 0.263 0.419 19 0.393 0.078 0.252 0.671 20 0.161 -0.105 0.461 0.790 23 0.112 0.319 0.654 0.324 24 0.289 0.553 0.098 0.613 26 0.435 0.421 0.187 0.598 27 0.589 0.601 0.143 0.398 28 0.155 0.521 0.289 0.401 29 0.232 0.132 0.687 0.375 31 0.701 0.569 0.059 0.568 32 0.151 0.363 0.452 0.391 33 0.198 0.301						
14 0.1391 0.258 0.497 0.543 15 0.765 0.099 0.034 0.439 16 0.185 0.138 0.723 0.650 18 0.304 0.439 0.263 0.419 19 0.393 0.078 0.252 0.671 20 0.161 -0.105 0.461 0.790 23 0.112 0.319 0.654 0.324 24 0.289 0.553 0.098 0.613 26 0.435 0.421 0.187 0.598 27 0.589 0.601 0.143 0.398 28 0.155 0.521 0.289 0.401 29 0.232 0.132 0.687 0.375 31 0.701 0.569 0.059 0.568 32 0.151 0.363 0.452 0.391 33 0.198 0.301 0.363 0.690 34 0.376 0.581						
15 0.765 0.099 0.034 0.439 16 0.185 0.138 0.723 0.650 18 0.304 0.439 0.263 0.419 19 0.393 0.078 0.252 0.671 20 0.161 -0.105 0.461 0.790 23 0.112 0.319 0.654 0.324 24 0.289 0.553 0.098 0.613 26 0.435 0.421 0.187 0.598 27 0.589 0.601 0.143 0.398 28 0.155 0.521 0.289 0.401 29 0.232 0.132 0.687 0.375 31 0.701 0.569 0.059 0.568 32 0.151 0.363 0.452 0.391 33 0.198 0.301 0.363 0.690 34 0.376 0.581 0.253 0.450 36 0.613 0.543						
16 0.185 0.138 0.723 0.650 18 0.304 0.439 0.263 0.419 19 0.393 0.078 0.252 0.671 20 0.161 -0.105 0.461 0.790 23 0.112 0.319 0.654 0.324 24 0.289 0.553 0.098 0.613 26 0.435 0.421 0.187 0.598 27 0.589 0.601 0.143 0.398 28 0.155 0.521 0.289 0.401 29 0.232 0.132 0.687 0.375 31 0.701 0.569 0.059 0.568 32 0.151 0.363 0.452 0.391 33 0.198 0.301 0.363 0.690 34 0.376 0.581 0.253 0.450 36 0.613 0.543 0.145 0.679 37 0.463 0.311 0.136 0.679						
18 0.304 0.439 0.263 0.419 19 0.393 0.078 0.252 0.671 20 0.161 -0.105 0.461 0.790 23 0.112 0.319 0.654 0.324 24 0.289 0.553 0.098 0.613 26 0.435 0.421 0.187 0.598 27 0.589 0.601 0.143 0.398 28 0.155 0.521 0.289 0.401 29 0.232 0.132 0.687 0.375 31 0.701 0.569 0.059 0.568 32 0.151 0.363 0.452 0.391 33 0.198 0.301 0.363 0.690 34 0.376 0.581 0.253 0.450 36 0.613 0.543 0.145 0.679 37 0.463 0.311 0.136 0.679						
19 0.393 0.078 0.252 0.671 20 0.161 -0.105 0.461 0.790 23 0.112 0.319 0.654 0.324 24 0.289 0.553 0.098 0.613 26 0.435 0.421 0.187 0.598 27 0.589 0.601 0.143 0.398 28 0.155 0.521 0.289 0.401 29 0.232 0.132 0.687 0.375 31 0.701 0.569 0.059 0.568 32 0.151 0.363 0.452 0.391 33 0.198 0.301 0.363 0.690 34 0.376 0.581 0.253 0.450 36 0.613 0.543 0.145 0.679 37 0.463 0.311 0.136 0.679						
20 0.161 -0.105 0.461 0.790 23 0.112 0.319 0.654 0.324 24 0.289 0.553 0.098 0.613 26 0.435 0.421 0.187 0.598 27 0.589 0.601 0.143 0.398 28 0.155 0.521 0.289 0.401 29 0.232 0.132 0.687 0.375 31 0.701 0.569 0.059 0.568 32 0.151 0.363 0.452 0.391 33 0.198 0.301 0.363 0.690 34 0.376 0.581 0.253 0.450 36 0.613 0.543 0.145 0.679 37 0.463 0.311 0.136 0.679	18	0.304	0.439	0.263	0.419	
23 0.112 0.319 0.654 0.324 24 0.289 0.553 0.098 0.613 26 0.435 0.421 0.187 0.598 27 0.589 0.601 0.143 0.398 28 0.155 0.521 0.289 0.401 29 0.232 0.132 0.687 0.375 31 0.701 0.569 0.059 0.568 32 0.151 0.363 0.452 0.391 33 0.198 0.301 0.363 0.690 34 0.376 0.581 0.253 0.450 36 0.613 0.543 0.145 0.679 37 0.463 0.311 0.136 0.679	19	0.393	0.078	0.252	0.671	
24 0.289 0.553 0.098 0.613 26 0.435 0.421 0.187 0.598 27 0.589 0.601 0.143 0.398 28 0.155 0.521 0.289 0.401 29 0.232 0.132 0.687 0.375 31 0.701 0.569 0.059 0.568 32 0.151 0.363 0.452 0.391 33 0.198 0.301 0.363 0.690 34 0.376 0.581 0.253 0.450 36 0.613 0.543 0.145 0.679 37 0.463 0.311 0.136 0.679	20	0.161	-0.105	0.461	0.790	
26 0.435 0.421 0.187 0.598 27 0.589 0.601 0.143 0.398 28 0.155 0.521 0.289 0.401 29 0.232 0.132 0.687 0.375 31 0.701 0.569 0.059 0.568 32 0.151 0.363 0.452 0.391 33 0.198 0.301 0.363 0.690 34 0.376 0.581 0.253 0.450 36 0.613 0.543 0.145 0.679 37 0.463 0.311 0.136 0.679	23	0.112	0.319	0.654	0.324	
27 0.589 0.601 0.143 0.398 28 0.155 0.521 0.289 0.401 29 0.232 0.132 0.687 0.375 31 0.701 0.569 0.059 0.568 32 0.151 0.363 0.452 0.391 33 0.198 0.301 0.363 0.690 34 0.376 0.581 0.253 0.450 36 0.613 0.543 0.145 0.679 37 0.463 0.311 0.136 0.679	24	0.289	0.553	0.098	0.613	
28 0.155 0.521 0.289 0.401 29 0.232 0.132 0.687 0.375 31 0.701 0.569 0.059 0.568 32 0.151 0.363 0.452 0.391 33 0.198 0.301 0.363 0.690 34 0.376 0.581 0.253 0.450 36 0.613 0.543 0.145 0.679 37 0.463 0.311 0.136 0.679	26	0.435	0.421	0.187	0.598	
29 0.232 0.132 0.687 0.375 31 0.701 0.569 0.059 0.568 32 0.151 0.363 0.452 0.391 33 0.198 0.301 0.363 0.690 34 0.376 0.581 0.253 0.450 36 0.613 0.543 0.145 0.679 37 0.463 0.311 0.136 0.679	27	0.589	0.601	0.143	0.398	
31 0.701 0.569 0.059 0.568 32 0.151 0.363 0.452 0.391 33 0.198 0.301 0.363 0.690 34 0.376 0.581 0.253 0.450 36 0.613 0.543 0.145 0.679 37 0.463 0.311 0.136 0.679	28	0.155	0.521	0.289	0.401	
32 0.151 0.363 0.452 0.391 33 0.198 0.301 0.363 0.690 34 0.376 0.581 0.253 0.450 36 0.613 0.543 0.145 0.679 37 0.463 0.311 0.136 0.679	29	0.232	0.132	0.687	0.375	
33 0.198 0.301 0.363 0.690 34 0.376 0.581 0.253 0.450 36 0.613 0.543 0.145 0.679 37 0.463 0.311 0.136 0.679	31	0.701	0.569	0.059	0.568	
34 0.376 0.581 0.253 0.450 36 0.613 0.543 0.145 0.679 37 0.463 0.311 0.136 0.679	32	0.151	0.363	0.452	0.391	
36 0.613 0.543 0.145 0.679 37 0.463 0.311 0.136 0.679	33	0.198	0.301	0.363	0.690	
37 0.463 0.311 0.136 0.679	34	0.376	0.581	0.253	0.450	
	36	0.613	0.543	0.145	0.679	
38 0.201 -0.231 0.346 0.602	37	0.463	0.311	0.136	0.679	
	38	0.201	-0.231	0.346	0.602	

Table 4. Factors obtained by questionnaires after varimax rotation

	Factor 1		Factor 2		Factor 3
Item	Factor loading	item	Factor loading	item	Factor loading
6	0.734	1	0.413	2	0.519
7	0.398	5	0.491	4	0.621
11	0.687	8	0.336	14	0.497
15	0.765	9	0.395	16	0.723
19	0.393	12	0.814	20	0.461
26	0.435	13	0.363	23	0.654
27	0.589	18	0.439	29	0.687
31	0.701	24	0.553	32	0.452
36	0.613	28	0.521	33	0.363
37	0.463	34	0.581	38	0.346

DISCUSSION

This study aimed to prepare a questionnaire intellectual understanding and harmony between Iranian couples in two stage process. In the first stage survey of the different social classes for the common problems couples and families and the factors affecting the level of understanding and harmony of thought and feeling of happiness and adjustment data were collected. Content analysis conducted a on the data obtained from the participants a 38-point questionnaire was obtained. Pilot study on 176 patients, and analysis of the results showed that the factors affecting the level of understanding and harmony can think of a couple has three floors including: Pilot study on 176 couples, and analyzing the results indicated that the factors affecting the level of intellectual understanding and harmony couples can be included in three categories: A. expectations before getting married, B. ideological issues (models of life, family, cultural, social, religious, communication and life skills) and C. personality traits (intellectual maturation, flexibility, sensitivity and irritability, disciplined, stubborn and pessimistic). Thus, the present questionnaire, although it may not be completely comprehensive questionnaire based on these comments, the consequences reflect behavior, the level of understanding in different classes, educational, social and economic. Therefore, the present questionnaire to assess the level of intellectual understanding and harmony between couples are suitable.

In research by Epstein, Chen and Beyber-Kamjou, were done on Chinese American couples concluded that one of the most important factors affecting the level of intellectual harmony beliefs and practices of the couple's life together is kind of relationship, So that it would have a significant effect on life satisfaction of marriage [4]. In the research was done by Kelley conclusion showed that the religious beliefs are most important factors in the continuation and satisfaction in married life. These findings indicate that religious beliefs play an important role in understanding identity and collaboration in couple's life [5]. Adler-Baeder, and Lamke found that the marital satisfaction of couples just do not understand each other's feelings and emotions that produce feelings of anger and hatred of the relationship between them[6]. Another study showed that perceptions regarding the wives' role are feeling of satisfaction and sense of understanding of the life couples [7]. A study by Caroll and Doherty concluded that the problems of satisfaction are related to characteristics, feelings of sympathy, understanding and factors that may influence the married life [8]. In other words, the individual characteristic of each of the spouses has an important role in the success of their life and interpersonal relations. In general, behavioral and personality differences between couples is the product of several factors that affect the beliefs, attitudes and behavior that have major impact on their end sparked controversy. For this reason, couple's behavior and actions affect the outcome of the various areas of difference and differential treatment by virtue of their function in life.

REFERENCES

- 1. Javdan, M. 2013. What is intellectual personality? And why it matters? American Journal of Life Science Researches, 1(1): 27-34.
- 2. Fisher, T.D. & Mc Nulty, J.K. 2008. Neuroticism and marital satisfaction: The mediating role played by the sexual relationship. Journal of FamilyPsychology, 22:112-122.
- 3. Luo, S. & Klohnen, E C.2005. Assertive mating and marital quality in newlyweds: A couple-centered approach. Journal of Personality and Social Psychology, 88:304-326.
- 4. Epstein, N.B., Chen, F. & Beyber-Kamjou, I. 2005. Relationship standards and marital satisfaction in Chinese and American couples. Journal of Marital Family Therapy, 31(1): 59-74.
- 5. Kelley, B.S. 2008. Life Satisfaction, Religiosity/Spirituality, and the relationship with parents in adolescents and young adults. Dissertation Abstract International, 69(10): 119.
- 6. Adler-Baeder, F.H.B. &, Lamke, L. 2004. Putting empirical knowledge to work: Research and programming on marital quality. Family, 53 (5): 537-546.
- 7. Jakubowski, S.F., Milne, E.P., Brunner, H. & Miller, R.B. 2004. A review of empirically supported marital enrichment programs. Family Relation, 53 (5), 528-36.
- 8. Caroll, J.S., Doherty, W.J. 2003. Evaluating the effectiveness of premarital prevention programs: A Meta analytic review of outcome research. Family Relation, 52 (2):105-18.